基于面部标志的面部不对称性自动量化

A. M. N. Taufique, A. Savakis, J. Leckenby
{"title":"基于面部标志的面部不对称性自动量化","authors":"A. M. N. Taufique, A. Savakis, J. Leckenby","doi":"10.1109/WNYIPW.2019.8923078","DOIUrl":null,"url":null,"abstract":"One-sided facial paralysis causes uneven movements of facial muscles on the sides of the face. Physicians currently assess facial asymmetry in a subjective manner based on their clinical experience. This paper proposes a novel method to provide an objective and quantitative asymmetry score for frontal faces. Our metric has the potential to help physicians for diagnosis as well as monitoring the rehabilitation of patients with one-sided facial paralysis. A deep learning based landmark detection technique is used to estimate style invariant facial landmark points and dense optical flow is used to generate motion maps from a short sequence of frames. Six face regions are considered corresponding to the left and right parts of the forehead, eyes, and mouth. Motion is computed and compared between the left and the right parts of each region of interest to estimate the symmetry score. For testing, asymmetric sequences are synthetically generated from a facial expression dataset. A score equation is developed to quantify symmetry in both symmetric and asymmetric face sequences.","PeriodicalId":275099,"journal":{"name":"2019 IEEE Western New York Image and Signal Processing Workshop (WNYISPW)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Automatic Quantification of Facial Asymmetry Using Facial Landmarks\",\"authors\":\"A. M. N. Taufique, A. Savakis, J. Leckenby\",\"doi\":\"10.1109/WNYIPW.2019.8923078\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One-sided facial paralysis causes uneven movements of facial muscles on the sides of the face. Physicians currently assess facial asymmetry in a subjective manner based on their clinical experience. This paper proposes a novel method to provide an objective and quantitative asymmetry score for frontal faces. Our metric has the potential to help physicians for diagnosis as well as monitoring the rehabilitation of patients with one-sided facial paralysis. A deep learning based landmark detection technique is used to estimate style invariant facial landmark points and dense optical flow is used to generate motion maps from a short sequence of frames. Six face regions are considered corresponding to the left and right parts of the forehead, eyes, and mouth. Motion is computed and compared between the left and the right parts of each region of interest to estimate the symmetry score. For testing, asymmetric sequences are synthetically generated from a facial expression dataset. A score equation is developed to quantify symmetry in both symmetric and asymmetric face sequences.\",\"PeriodicalId\":275099,\"journal\":{\"name\":\"2019 IEEE Western New York Image and Signal Processing Workshop (WNYISPW)\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Western New York Image and Signal Processing Workshop (WNYISPW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WNYIPW.2019.8923078\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Western New York Image and Signal Processing Workshop (WNYISPW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WNYIPW.2019.8923078","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

单侧面瘫导致面部两侧肌肉运动不均匀。目前,医生根据他们的临床经验以主观的方式评估面部不对称。本文提出了一种客观定量的正面人脸不对称评分方法。我们的指标有可能帮助医生诊断以及监测单侧面瘫患者的康复。基于深度学习的地标检测技术用于估计风格不变的面部地标点,并使用密集光流从短帧序列中生成运动地图。六个脸部区域被认为对应于前额、眼睛和嘴巴的左右部分。计算并比较每个感兴趣区域的左右部分的运动,以估计对称分数。为了进行测试,非对称序列是由面部表情数据集合成的。建立了一个分数方程来量化对称和非对称面部序列的对称性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automatic Quantification of Facial Asymmetry Using Facial Landmarks
One-sided facial paralysis causes uneven movements of facial muscles on the sides of the face. Physicians currently assess facial asymmetry in a subjective manner based on their clinical experience. This paper proposes a novel method to provide an objective and quantitative asymmetry score for frontal faces. Our metric has the potential to help physicians for diagnosis as well as monitoring the rehabilitation of patients with one-sided facial paralysis. A deep learning based landmark detection technique is used to estimate style invariant facial landmark points and dense optical flow is used to generate motion maps from a short sequence of frames. Six face regions are considered corresponding to the left and right parts of the forehead, eyes, and mouth. Motion is computed and compared between the left and the right parts of each region of interest to estimate the symmetry score. For testing, asymmetric sequences are synthetically generated from a facial expression dataset. A score equation is developed to quantify symmetry in both symmetric and asymmetric face sequences.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信