{"title":"用离群值检测重新思考考虑个体、时间和任务差异的任务时间估计","authors":"Quan Nguyen","doi":"10.1145/3375462.3375538","DOIUrl":null,"url":null,"abstract":"Time-on-task estimation, measured as the duration between two consecutive clicks using student log-files data, has been one of the most frequently used metrics in learning analytics research. However, the process of handling outliers (i.e., excessively long durations) in time-on-task estimation is under-explored and often not explicitly reported in many studies. One common approach to handle outliers in time-to-task estimation is to 'trim' all durations using a cut-off threshold, such as 60 or 30 minutes. This paper challenges this existing approach by demonstrating that the treatment of outliers in an educational context should be individual-specific, time-specific, and task-specific. In other words, what can be considered as outliers in time-on-task depends on the learning pattern of each student, the stages during the learning process, and the nature of the task involved. The analysis showed that predictive models using time-on-task estimation accounting for individual, time, and task differences could explain 3--4% more variances in academic performance than models using an outlier trimming approach. As an implication, this study provides a theoretically grounded and replicable outlier detection approach for future learning analytics research when using time-on-task estimation.","PeriodicalId":355800,"journal":{"name":"Proceedings of the Tenth International Conference on Learning Analytics & Knowledge","volume":"436 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Rethinking time-on-task estimation with outlier detection accounting for individual, time, and task differences\",\"authors\":\"Quan Nguyen\",\"doi\":\"10.1145/3375462.3375538\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Time-on-task estimation, measured as the duration between two consecutive clicks using student log-files data, has been one of the most frequently used metrics in learning analytics research. However, the process of handling outliers (i.e., excessively long durations) in time-on-task estimation is under-explored and often not explicitly reported in many studies. One common approach to handle outliers in time-to-task estimation is to 'trim' all durations using a cut-off threshold, such as 60 or 30 minutes. This paper challenges this existing approach by demonstrating that the treatment of outliers in an educational context should be individual-specific, time-specific, and task-specific. In other words, what can be considered as outliers in time-on-task depends on the learning pattern of each student, the stages during the learning process, and the nature of the task involved. The analysis showed that predictive models using time-on-task estimation accounting for individual, time, and task differences could explain 3--4% more variances in academic performance than models using an outlier trimming approach. As an implication, this study provides a theoretically grounded and replicable outlier detection approach for future learning analytics research when using time-on-task estimation.\",\"PeriodicalId\":355800,\"journal\":{\"name\":\"Proceedings of the Tenth International Conference on Learning Analytics & Knowledge\",\"volume\":\"436 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Tenth International Conference on Learning Analytics & Knowledge\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3375462.3375538\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Tenth International Conference on Learning Analytics & Knowledge","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3375462.3375538","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Rethinking time-on-task estimation with outlier detection accounting for individual, time, and task differences
Time-on-task estimation, measured as the duration between two consecutive clicks using student log-files data, has been one of the most frequently used metrics in learning analytics research. However, the process of handling outliers (i.e., excessively long durations) in time-on-task estimation is under-explored and often not explicitly reported in many studies. One common approach to handle outliers in time-to-task estimation is to 'trim' all durations using a cut-off threshold, such as 60 or 30 minutes. This paper challenges this existing approach by demonstrating that the treatment of outliers in an educational context should be individual-specific, time-specific, and task-specific. In other words, what can be considered as outliers in time-on-task depends on the learning pattern of each student, the stages during the learning process, and the nature of the task involved. The analysis showed that predictive models using time-on-task estimation accounting for individual, time, and task differences could explain 3--4% more variances in academic performance than models using an outlier trimming approach. As an implication, this study provides a theoretically grounded and replicable outlier detection approach for future learning analytics research when using time-on-task estimation.