用离群值检测重新思考考虑个体、时间和任务差异的任务时间估计

Quan Nguyen
{"title":"用离群值检测重新思考考虑个体、时间和任务差异的任务时间估计","authors":"Quan Nguyen","doi":"10.1145/3375462.3375538","DOIUrl":null,"url":null,"abstract":"Time-on-task estimation, measured as the duration between two consecutive clicks using student log-files data, has been one of the most frequently used metrics in learning analytics research. However, the process of handling outliers (i.e., excessively long durations) in time-on-task estimation is under-explored and often not explicitly reported in many studies. One common approach to handle outliers in time-to-task estimation is to 'trim' all durations using a cut-off threshold, such as 60 or 30 minutes. This paper challenges this existing approach by demonstrating that the treatment of outliers in an educational context should be individual-specific, time-specific, and task-specific. In other words, what can be considered as outliers in time-on-task depends on the learning pattern of each student, the stages during the learning process, and the nature of the task involved. The analysis showed that predictive models using time-on-task estimation accounting for individual, time, and task differences could explain 3--4% more variances in academic performance than models using an outlier trimming approach. As an implication, this study provides a theoretically grounded and replicable outlier detection approach for future learning analytics research when using time-on-task estimation.","PeriodicalId":355800,"journal":{"name":"Proceedings of the Tenth International Conference on Learning Analytics & Knowledge","volume":"436 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Rethinking time-on-task estimation with outlier detection accounting for individual, time, and task differences\",\"authors\":\"Quan Nguyen\",\"doi\":\"10.1145/3375462.3375538\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Time-on-task estimation, measured as the duration between two consecutive clicks using student log-files data, has been one of the most frequently used metrics in learning analytics research. However, the process of handling outliers (i.e., excessively long durations) in time-on-task estimation is under-explored and often not explicitly reported in many studies. One common approach to handle outliers in time-to-task estimation is to 'trim' all durations using a cut-off threshold, such as 60 or 30 minutes. This paper challenges this existing approach by demonstrating that the treatment of outliers in an educational context should be individual-specific, time-specific, and task-specific. In other words, what can be considered as outliers in time-on-task depends on the learning pattern of each student, the stages during the learning process, and the nature of the task involved. The analysis showed that predictive models using time-on-task estimation accounting for individual, time, and task differences could explain 3--4% more variances in academic performance than models using an outlier trimming approach. As an implication, this study provides a theoretically grounded and replicable outlier detection approach for future learning analytics research when using time-on-task estimation.\",\"PeriodicalId\":355800,\"journal\":{\"name\":\"Proceedings of the Tenth International Conference on Learning Analytics & Knowledge\",\"volume\":\"436 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Tenth International Conference on Learning Analytics & Knowledge\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3375462.3375538\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Tenth International Conference on Learning Analytics & Knowledge","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3375462.3375538","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

使用学生日志文件数据测量两次连续点击之间的持续时间,是学习分析研究中最常用的指标之一。然而,在任务时间估计中处理异常值(即过长的持续时间)的过程尚未得到充分探索,并且在许多研究中通常没有明确报道。在时间到任务的估计中,处理异常值的一种常用方法是使用一个截止阈值来“修剪”所有持续时间,比如60或30分钟。本文通过证明教育环境中异常值的处理应该是针对个人、时间和任务的,从而挑战了这种现有的方法。换句话说,什么可以被认为是任务上的异常值取决于每个学生的学习模式、学习过程中的阶段以及所涉及的任务的性质。分析表明,与使用离群值修剪方法的模型相比,使用考虑个人、时间和任务差异的任务时间估计的预测模型可以多解释3- 4%的学习成绩差异。作为一个启示,本研究提供了一个理论基础和可复制的离群检测方法,为未来的学习分析研究使用任务时间估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rethinking time-on-task estimation with outlier detection accounting for individual, time, and task differences
Time-on-task estimation, measured as the duration between two consecutive clicks using student log-files data, has been one of the most frequently used metrics in learning analytics research. However, the process of handling outliers (i.e., excessively long durations) in time-on-task estimation is under-explored and often not explicitly reported in many studies. One common approach to handle outliers in time-to-task estimation is to 'trim' all durations using a cut-off threshold, such as 60 or 30 minutes. This paper challenges this existing approach by demonstrating that the treatment of outliers in an educational context should be individual-specific, time-specific, and task-specific. In other words, what can be considered as outliers in time-on-task depends on the learning pattern of each student, the stages during the learning process, and the nature of the task involved. The analysis showed that predictive models using time-on-task estimation accounting for individual, time, and task differences could explain 3--4% more variances in academic performance than models using an outlier trimming approach. As an implication, this study provides a theoretically grounded and replicable outlier detection approach for future learning analytics research when using time-on-task estimation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信