基于相似搜索谓词扩展的分析查询在Spark中的高效处理

Guilherme Muzzi da Rocha, Cristina Dutra de Aguiar Ciferri
{"title":"基于相似搜索谓词扩展的分析查询在Spark中的高效处理","authors":"Guilherme Muzzi da Rocha, Cristina Dutra de Aguiar Ciferri","doi":"10.5753/jidm.2020.2019","DOIUrl":null,"url":null,"abstract":"An image data warehousing extends a conventional data warehousing to also manipulate images represented by feature vectors and attributes for similarity search. A challenge that arises is the efficient processing of analytical queries extended with a similarity search predicate. These queries have a high computational cost since they require the processing of costly star join operations and distance calculations in the same setting. We consider applications that manage huge volumes of data, where the use of parallel and distributed data processing frameworks is needed. In this article, we introduce two methods to efficiently solve this challenge in Spark. BrOmnImg is based on the integration of the broadcast join and the Omni techniques for the processing of the star join operation and the distance calculations, respectively. BrOmnImgCF extends BrOmnImg by using the conventional predicate to further reduce the number of distance calculations. Compared with the closest method available in the literature, BrOmnImg reduced the time spent on query processing by up to about 65%. Compared with BrOmnImg, BrOmnImgCF improved the performance by up to about 54%.","PeriodicalId":293511,"journal":{"name":"Journal of Information and Data Management","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient Processing of Analytical Queries Extended with Similarity Search Predicates over Images in Spark\",\"authors\":\"Guilherme Muzzi da Rocha, Cristina Dutra de Aguiar Ciferri\",\"doi\":\"10.5753/jidm.2020.2019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An image data warehousing extends a conventional data warehousing to also manipulate images represented by feature vectors and attributes for similarity search. A challenge that arises is the efficient processing of analytical queries extended with a similarity search predicate. These queries have a high computational cost since they require the processing of costly star join operations and distance calculations in the same setting. We consider applications that manage huge volumes of data, where the use of parallel and distributed data processing frameworks is needed. In this article, we introduce two methods to efficiently solve this challenge in Spark. BrOmnImg is based on the integration of the broadcast join and the Omni techniques for the processing of the star join operation and the distance calculations, respectively. BrOmnImgCF extends BrOmnImg by using the conventional predicate to further reduce the number of distance calculations. Compared with the closest method available in the literature, BrOmnImg reduced the time spent on query processing by up to about 65%. Compared with BrOmnImg, BrOmnImgCF improved the performance by up to about 54%.\",\"PeriodicalId\":293511,\"journal\":{\"name\":\"Journal of Information and Data Management\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Information and Data Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5753/jidm.2020.2019\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Information and Data Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/jidm.2020.2019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

图像数据仓库扩展了传统的数据仓库,还可以操作由特征向量和属性表示的图像,以便进行相似性搜索。随之而来的挑战是如何高效地处理使用相似搜索谓词扩展的分析查询。这些查询的计算成本很高,因为它们需要在相同的设置中处理昂贵的星型连接操作和距离计算。我们考虑管理大量数据的应用程序,在这些应用程序中需要使用并行和分布式数据处理框架。在本文中,我们将介绍在Spark中有效解决这一挑战的两种方法。BrOmnImg基于广播连接和Omni技术的集成,分别用于处理星型连接操作和距离计算。BrOmnImgCF通过使用常规谓词来扩展BrOmnImg,从而进一步减少距离计算的次数。与文献中最接近的方法相比,BrOmnImg将查询处理的时间减少了约65%。与BrOmnImg相比,BrOmnImgCF的性能提高了约54%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient Processing of Analytical Queries Extended with Similarity Search Predicates over Images in Spark
An image data warehousing extends a conventional data warehousing to also manipulate images represented by feature vectors and attributes for similarity search. A challenge that arises is the efficient processing of analytical queries extended with a similarity search predicate. These queries have a high computational cost since they require the processing of costly star join operations and distance calculations in the same setting. We consider applications that manage huge volumes of data, where the use of parallel and distributed data processing frameworks is needed. In this article, we introduce two methods to efficiently solve this challenge in Spark. BrOmnImg is based on the integration of the broadcast join and the Omni techniques for the processing of the star join operation and the distance calculations, respectively. BrOmnImgCF extends BrOmnImg by using the conventional predicate to further reduce the number of distance calculations. Compared with the closest method available in the literature, BrOmnImg reduced the time spent on query processing by up to about 65%. Compared with BrOmnImg, BrOmnImgCF improved the performance by up to about 54%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信