改进遗传算法-模拟退火算法在软件工作量和成本估算中的应用

I. Thamarai, S. Murugavalli
{"title":"改进遗传算法-模拟退火算法在软件工作量和成本估算中的应用","authors":"I. Thamarai, S. Murugavalli","doi":"10.18000/IJISAC.50154","DOIUrl":null,"url":null,"abstract":"I.Thamarai.1, S. Murugavalli.2 1Research Scholar, Sathyabama University, Chennai, India, 2Supervisor, Sathyabama University, Chennai. Email: 1ilango.thamarai@gmail.com, 2murugavalli26@rediffmail.com Abstract Software Effort Estimation is very crucial estimation task because of the intangible nature of software but it is very essential for developing a software application. Numerous approaches are available in software estimation method such as non-algorithmic models and algorithmic models. The main problems of SE prediction are identification of components of software project and feature selection between the projects. In this paper Modified Genetic Algorithm-Simulated Annealing (MGASA) is proposed to predict the software effort and cost estimation. In MGASA, the estimation of software is based on similar projects. Modified Genetic Algorithm (MGA) is a stochastic search algorithm. The adaptive search process has been effectively utilized in different types of challenging numerical optimization problems. The Simulated Annealing (SA) is an analogy between the way, in which the metal freezes and cools into a minimum energy crystalline structure. The main advantage of using Modified Genetic Algorithm-Simulated Annealing (MGASA) tool is to enhance the accuracy of software effort estimation.","PeriodicalId":121456,"journal":{"name":"International Journal on Information Sciences and Computing","volume":"96 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"STUDY OF MODIFIED GENETIC ALGORITHM-SIMULATED ANNEALING FOR THE ESTIMATION OF SOFTWARE EFFORT AND COST\",\"authors\":\"I. Thamarai, S. Murugavalli\",\"doi\":\"10.18000/IJISAC.50154\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"I.Thamarai.1, S. Murugavalli.2 1Research Scholar, Sathyabama University, Chennai, India, 2Supervisor, Sathyabama University, Chennai. Email: 1ilango.thamarai@gmail.com, 2murugavalli26@rediffmail.com Abstract Software Effort Estimation is very crucial estimation task because of the intangible nature of software but it is very essential for developing a software application. Numerous approaches are available in software estimation method such as non-algorithmic models and algorithmic models. The main problems of SE prediction are identification of components of software project and feature selection between the projects. In this paper Modified Genetic Algorithm-Simulated Annealing (MGASA) is proposed to predict the software effort and cost estimation. In MGASA, the estimation of software is based on similar projects. Modified Genetic Algorithm (MGA) is a stochastic search algorithm. The adaptive search process has been effectively utilized in different types of challenging numerical optimization problems. The Simulated Annealing (SA) is an analogy between the way, in which the metal freezes and cools into a minimum energy crystalline structure. The main advantage of using Modified Genetic Algorithm-Simulated Annealing (MGASA) tool is to enhance the accuracy of software effort estimation.\",\"PeriodicalId\":121456,\"journal\":{\"name\":\"International Journal on Information Sciences and Computing\",\"volume\":\"96 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal on Information Sciences and Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18000/IJISAC.50154\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal on Information Sciences and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18000/IJISAC.50154","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

I.Thamarai。1, S. murugavalli . 1印度印度金奈萨提亚拉巴马大学研究学者,2印度印度金奈萨提亚拉巴马大学导师。摘要软件工作量评估是一项非常重要的评估任务,因为软件具有无形的性质,但它对于开发软件应用程序非常重要。软件估计方法有多种方法,如非算法模型和算法模型。SE预测的主要问题是软件项目组件的识别和项目之间的特征选择。本文提出了一种改进的遗传算法-模拟退火(MGASA)来预测软件的工作量和成本估算。在mgaa中,软件的评估是基于类似的项目。改进遗传算法(MGA)是一种随机搜索算法。自适应搜索过程已被有效地应用于不同类型的挑战性数值优化问题。模拟退火(SA)是金属冻结和冷却成最小能量晶体结构的一种类比。采用改进遗传算法-模拟退火(MGASA)工具的主要优点是提高了软件工作量估计的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
STUDY OF MODIFIED GENETIC ALGORITHM-SIMULATED ANNEALING FOR THE ESTIMATION OF SOFTWARE EFFORT AND COST
I.Thamarai.1, S. Murugavalli.2 1Research Scholar, Sathyabama University, Chennai, India, 2Supervisor, Sathyabama University, Chennai. Email: 1ilango.thamarai@gmail.com, 2murugavalli26@rediffmail.com Abstract Software Effort Estimation is very crucial estimation task because of the intangible nature of software but it is very essential for developing a software application. Numerous approaches are available in software estimation method such as non-algorithmic models and algorithmic models. The main problems of SE prediction are identification of components of software project and feature selection between the projects. In this paper Modified Genetic Algorithm-Simulated Annealing (MGASA) is proposed to predict the software effort and cost estimation. In MGASA, the estimation of software is based on similar projects. Modified Genetic Algorithm (MGA) is a stochastic search algorithm. The adaptive search process has been effectively utilized in different types of challenging numerical optimization problems. The Simulated Annealing (SA) is an analogy between the way, in which the metal freezes and cools into a minimum energy crystalline structure. The main advantage of using Modified Genetic Algorithm-Simulated Annealing (MGASA) tool is to enhance the accuracy of software effort estimation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信