{"title":"风能系统的智能最大功率提取","authors":"A. Eltamaly, Hassan M. H. Farh","doi":"10.1109/SEGE.2015.7324623","DOIUrl":null,"url":null,"abstract":"This paper proposes two effective maximum power point tracking (MPPT) algorithms for two different wind energy conversion systems connected to the grid using permanent magnet synchronous generator (PMSG). The wind turbine (WT) is connected to the grid via back-to-back PWM-VSC for the first scheme, whereas, the WT is connected to the grid via diode-bridge rectifier, boost converter and the grid side PWM-VSC for the other scheme. Active and reactive power control is achieved independently via controlling q-axis and d-axis current components, respectively for the first scheme, whereas, active and reactive power control is achieved dependently via controlling modulation index of the PWM converter and duty ratio of the boost converter for the second scheme. The effective and powerful WECS is determined via the whole control system superiority and the system operation stability. Also, comparison of the output power from each WECS is introduced for maximum power following.","PeriodicalId":409488,"journal":{"name":"2015 IEEE International Conference on Smart Energy Grid Engineering (SEGE)","volume":"355 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Smart maximum power extraction for wind energy systems\",\"authors\":\"A. Eltamaly, Hassan M. H. Farh\",\"doi\":\"10.1109/SEGE.2015.7324623\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes two effective maximum power point tracking (MPPT) algorithms for two different wind energy conversion systems connected to the grid using permanent magnet synchronous generator (PMSG). The wind turbine (WT) is connected to the grid via back-to-back PWM-VSC for the first scheme, whereas, the WT is connected to the grid via diode-bridge rectifier, boost converter and the grid side PWM-VSC for the other scheme. Active and reactive power control is achieved independently via controlling q-axis and d-axis current components, respectively for the first scheme, whereas, active and reactive power control is achieved dependently via controlling modulation index of the PWM converter and duty ratio of the boost converter for the second scheme. The effective and powerful WECS is determined via the whole control system superiority and the system operation stability. Also, comparison of the output power from each WECS is introduced for maximum power following.\",\"PeriodicalId\":409488,\"journal\":{\"name\":\"2015 IEEE International Conference on Smart Energy Grid Engineering (SEGE)\",\"volume\":\"355 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Conference on Smart Energy Grid Engineering (SEGE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SEGE.2015.7324623\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Smart Energy Grid Engineering (SEGE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SEGE.2015.7324623","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Smart maximum power extraction for wind energy systems
This paper proposes two effective maximum power point tracking (MPPT) algorithms for two different wind energy conversion systems connected to the grid using permanent magnet synchronous generator (PMSG). The wind turbine (WT) is connected to the grid via back-to-back PWM-VSC for the first scheme, whereas, the WT is connected to the grid via diode-bridge rectifier, boost converter and the grid side PWM-VSC for the other scheme. Active and reactive power control is achieved independently via controlling q-axis and d-axis current components, respectively for the first scheme, whereas, active and reactive power control is achieved dependently via controlling modulation index of the PWM converter and duty ratio of the boost converter for the second scheme. The effective and powerful WECS is determined via the whole control system superiority and the system operation stability. Also, comparison of the output power from each WECS is introduced for maximum power following.