{"title":"基于度和子图边缘采样的网络稀疏化","authors":"Zhen Su, Jürgen Kurths, Henning Meyerhenke","doi":"10.1109/ASONAM55673.2022.10068651","DOIUrl":null,"url":null,"abstract":"Network (or graph) sparsification compresses a graph by removing inessential edges. By reducing the data volume, it accelerates or even facilitates many downstream analyses. Still, the accuracy of many sparsification methods, with filtering-based edge sampling being the most typical one, heavily relies on an appropriate definition of edge importance. Instead, we propose a different perspective with a generalized local-property-based sampling method, which preserves (scaled) local node characteristics. Apart from degrees, these local node characteristics we use are the expected (scaled) number of wedges and triangles a node belongs to. Through such a preservation, main complex structural properties are preserved implicitly. We adapt a game-theoretic framework from uncertain graph sampling by including a threshold for faster convergence (at least 4 times faster empirically) to approximate solutions. Extensive experimental studies on functional climate networks show the effectiveness of this method in preserving macroscopic to meso-scopic and microscopic network structural properties.","PeriodicalId":423113,"journal":{"name":"2022 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Network Sparsification via Degree- and Subgraph-based Edge Sampling\",\"authors\":\"Zhen Su, Jürgen Kurths, Henning Meyerhenke\",\"doi\":\"10.1109/ASONAM55673.2022.10068651\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Network (or graph) sparsification compresses a graph by removing inessential edges. By reducing the data volume, it accelerates or even facilitates many downstream analyses. Still, the accuracy of many sparsification methods, with filtering-based edge sampling being the most typical one, heavily relies on an appropriate definition of edge importance. Instead, we propose a different perspective with a generalized local-property-based sampling method, which preserves (scaled) local node characteristics. Apart from degrees, these local node characteristics we use are the expected (scaled) number of wedges and triangles a node belongs to. Through such a preservation, main complex structural properties are preserved implicitly. We adapt a game-theoretic framework from uncertain graph sampling by including a threshold for faster convergence (at least 4 times faster empirically) to approximate solutions. Extensive experimental studies on functional climate networks show the effectiveness of this method in preserving macroscopic to meso-scopic and microscopic network structural properties.\",\"PeriodicalId\":423113,\"journal\":{\"name\":\"2022 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASONAM55673.2022.10068651\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASONAM55673.2022.10068651","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Network Sparsification via Degree- and Subgraph-based Edge Sampling
Network (or graph) sparsification compresses a graph by removing inessential edges. By reducing the data volume, it accelerates or even facilitates many downstream analyses. Still, the accuracy of many sparsification methods, with filtering-based edge sampling being the most typical one, heavily relies on an appropriate definition of edge importance. Instead, we propose a different perspective with a generalized local-property-based sampling method, which preserves (scaled) local node characteristics. Apart from degrees, these local node characteristics we use are the expected (scaled) number of wedges and triangles a node belongs to. Through such a preservation, main complex structural properties are preserved implicitly. We adapt a game-theoretic framework from uncertain graph sampling by including a threshold for faster convergence (at least 4 times faster empirically) to approximate solutions. Extensive experimental studies on functional climate networks show the effectiveness of this method in preserving macroscopic to meso-scopic and microscopic network structural properties.