{"title":"交互式分布式证明","authors":"Gillat Kol, R. Oshman, Raghuvansh R. Saxena","doi":"10.1145/3212734.3212771","DOIUrl":null,"url":null,"abstract":"Interactive proof systems allow a resource-bounded verifier to decide an intractable language (or compute a hard function) by communicating with a powerful but untrusted prover. Such systems guarantee that the prover can only convince the verifier of true statements. In the context of centralized computation, a celebrated result shows that interactive proofs are extremely powerful, allowing polynomial-time verifiers to decide any language in PSPACE. In this work we initiate the study of interactive distributed proofs : a network of nodes interacts with a single untrusted prover, who sees the entire network graph, to decide whether the graph satisfies some property. We focus on the communication cost of the protocol --- the number of bits the nodes must exchange with the prover and each other. Our model can also be viewed as a generalization of the various models of \"distributed NP'' (proof labeling schemes, etc.) which received significant attention recently: while these models only allow the prover to present each network node with a string of advice, our model allows for back-and-forth interaction. We prove both upper and lower bounds for the new model. We show that for some problems, interaction can exponentially decrease the communication cost compared to a non-interactive prover, but on the other hand, some problems retain non-trivial cost even with interaction.","PeriodicalId":198284,"journal":{"name":"Proceedings of the 2018 ACM Symposium on Principles of Distributed Computing","volume":"298 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"40","resultStr":"{\"title\":\"Interactive Distributed Proofs\",\"authors\":\"Gillat Kol, R. Oshman, Raghuvansh R. Saxena\",\"doi\":\"10.1145/3212734.3212771\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Interactive proof systems allow a resource-bounded verifier to decide an intractable language (or compute a hard function) by communicating with a powerful but untrusted prover. Such systems guarantee that the prover can only convince the verifier of true statements. In the context of centralized computation, a celebrated result shows that interactive proofs are extremely powerful, allowing polynomial-time verifiers to decide any language in PSPACE. In this work we initiate the study of interactive distributed proofs : a network of nodes interacts with a single untrusted prover, who sees the entire network graph, to decide whether the graph satisfies some property. We focus on the communication cost of the protocol --- the number of bits the nodes must exchange with the prover and each other. Our model can also be viewed as a generalization of the various models of \\\"distributed NP'' (proof labeling schemes, etc.) which received significant attention recently: while these models only allow the prover to present each network node with a string of advice, our model allows for back-and-forth interaction. We prove both upper and lower bounds for the new model. We show that for some problems, interaction can exponentially decrease the communication cost compared to a non-interactive prover, but on the other hand, some problems retain non-trivial cost even with interaction.\",\"PeriodicalId\":198284,\"journal\":{\"name\":\"Proceedings of the 2018 ACM Symposium on Principles of Distributed Computing\",\"volume\":\"298 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"40\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2018 ACM Symposium on Principles of Distributed Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3212734.3212771\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2018 ACM Symposium on Principles of Distributed Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3212734.3212771","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Interactive proof systems allow a resource-bounded verifier to decide an intractable language (or compute a hard function) by communicating with a powerful but untrusted prover. Such systems guarantee that the prover can only convince the verifier of true statements. In the context of centralized computation, a celebrated result shows that interactive proofs are extremely powerful, allowing polynomial-time verifiers to decide any language in PSPACE. In this work we initiate the study of interactive distributed proofs : a network of nodes interacts with a single untrusted prover, who sees the entire network graph, to decide whether the graph satisfies some property. We focus on the communication cost of the protocol --- the number of bits the nodes must exchange with the prover and each other. Our model can also be viewed as a generalization of the various models of "distributed NP'' (proof labeling schemes, etc.) which received significant attention recently: while these models only allow the prover to present each network node with a string of advice, our model allows for back-and-forth interaction. We prove both upper and lower bounds for the new model. We show that for some problems, interaction can exponentially decrease the communication cost compared to a non-interactive prover, but on the other hand, some problems retain non-trivial cost even with interaction.