{"title":"减方差保守策略迭代","authors":"Naman Agarwal, Brian Bullins, Karan Singh","doi":"10.48550/arXiv.2212.06283","DOIUrl":null,"url":null,"abstract":"We study the sample complexity of reducing reinforcement learning to a sequence of empirical risk minimization problems over the policy space. Such reductions-based algorithms exhibit local convergence in the function space, as opposed to the parameter space for policy gradient algorithms, and thus are unaffected by the possibly non-linear or discontinuous parameterization of the policy class. We propose a variance-reduced variant of Conservative Policy Iteration that improves the sample complexity of producing a $\\varepsilon$-functional local optimum from $O(\\varepsilon^{-4})$ to $O(\\varepsilon^{-3})$. Under state-coverage and policy-completeness assumptions, the algorithm enjoys $\\varepsilon$-global optimality after sampling $O(\\varepsilon^{-2})$ times, improving upon the previously established $O(\\varepsilon^{-3})$ sample requirement.","PeriodicalId":267197,"journal":{"name":"International Conference on Algorithmic Learning Theory","volume":"354 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Variance-Reduced Conservative Policy Iteration\",\"authors\":\"Naman Agarwal, Brian Bullins, Karan Singh\",\"doi\":\"10.48550/arXiv.2212.06283\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the sample complexity of reducing reinforcement learning to a sequence of empirical risk minimization problems over the policy space. Such reductions-based algorithms exhibit local convergence in the function space, as opposed to the parameter space for policy gradient algorithms, and thus are unaffected by the possibly non-linear or discontinuous parameterization of the policy class. We propose a variance-reduced variant of Conservative Policy Iteration that improves the sample complexity of producing a $\\\\varepsilon$-functional local optimum from $O(\\\\varepsilon^{-4})$ to $O(\\\\varepsilon^{-3})$. Under state-coverage and policy-completeness assumptions, the algorithm enjoys $\\\\varepsilon$-global optimality after sampling $O(\\\\varepsilon^{-2})$ times, improving upon the previously established $O(\\\\varepsilon^{-3})$ sample requirement.\",\"PeriodicalId\":267197,\"journal\":{\"name\":\"International Conference on Algorithmic Learning Theory\",\"volume\":\"354 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Algorithmic Learning Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2212.06283\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Algorithmic Learning Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2212.06283","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We study the sample complexity of reducing reinforcement learning to a sequence of empirical risk minimization problems over the policy space. Such reductions-based algorithms exhibit local convergence in the function space, as opposed to the parameter space for policy gradient algorithms, and thus are unaffected by the possibly non-linear or discontinuous parameterization of the policy class. We propose a variance-reduced variant of Conservative Policy Iteration that improves the sample complexity of producing a $\varepsilon$-functional local optimum from $O(\varepsilon^{-4})$ to $O(\varepsilon^{-3})$. Under state-coverage and policy-completeness assumptions, the algorithm enjoys $\varepsilon$-global optimality after sampling $O(\varepsilon^{-2})$ times, improving upon the previously established $O(\varepsilon^{-3})$ sample requirement.