从图像序列中恢复三维关节运动的约束意识平滑框架

Hiroyuki Segawa, H. Shioya, N. Hiraki, T. Totsuka
{"title":"从图像序列中恢复三维关节运动的约束意识平滑框架","authors":"Hiroyuki Segawa, H. Shioya, N. Hiraki, T. Totsuka","doi":"10.1109/AFGR.2000.840677","DOIUrl":null,"url":null,"abstract":"3D articulated motion is recovered from image sequences by relying on a recursive smoothing framework. In conventional recursive filtering frameworks, the filter may misestimate the state due to degenerated observation. To cope with this problem, we take into account knowledge about the limitations of the state-space. Our novel estimation framework relies on the combination of a smoothing algorithm with a \"constraint-conscious\" enhanced Kalman filter. The technique is shown to be effective for the recovery of experimental 3D articulated motions, making it a good candidate for marker-less motion capture applications.","PeriodicalId":360065,"journal":{"name":"Proceedings Fourth IEEE International Conference on Automatic Face and Gesture Recognition (Cat. No. PR00580)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Constraint-conscious smoothing framework for the recovery of 3D articulated motion from image sequences\",\"authors\":\"Hiroyuki Segawa, H. Shioya, N. Hiraki, T. Totsuka\",\"doi\":\"10.1109/AFGR.2000.840677\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"3D articulated motion is recovered from image sequences by relying on a recursive smoothing framework. In conventional recursive filtering frameworks, the filter may misestimate the state due to degenerated observation. To cope with this problem, we take into account knowledge about the limitations of the state-space. Our novel estimation framework relies on the combination of a smoothing algorithm with a \\\"constraint-conscious\\\" enhanced Kalman filter. The technique is shown to be effective for the recovery of experimental 3D articulated motions, making it a good candidate for marker-less motion capture applications.\",\"PeriodicalId\":360065,\"journal\":{\"name\":\"Proceedings Fourth IEEE International Conference on Automatic Face and Gesture Recognition (Cat. No. PR00580)\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings Fourth IEEE International Conference on Automatic Face and Gesture Recognition (Cat. No. PR00580)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AFGR.2000.840677\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Fourth IEEE International Conference on Automatic Face and Gesture Recognition (Cat. No. PR00580)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AFGR.2000.840677","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

三维关节运动恢复从图像序列依赖于一个递归平滑框架。在传统的递归滤波框架中,由于观测值退化,滤波器可能会对状态进行错误估计。为了解决这个问题,我们考虑了关于状态空间限制的知识。我们的新估计框架依赖于平滑算法与“约束意识”增强卡尔曼滤波器的结合。该技术被证明是有效的实验三维关节运动的恢复,使其成为无标记运动捕捉应用的良好候选者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Constraint-conscious smoothing framework for the recovery of 3D articulated motion from image sequences
3D articulated motion is recovered from image sequences by relying on a recursive smoothing framework. In conventional recursive filtering frameworks, the filter may misestimate the state due to degenerated observation. To cope with this problem, we take into account knowledge about the limitations of the state-space. Our novel estimation framework relies on the combination of a smoothing algorithm with a "constraint-conscious" enhanced Kalman filter. The technique is shown to be effective for the recovery of experimental 3D articulated motions, making it a good candidate for marker-less motion capture applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信