论名义、序数和其他尺度的综合指数的定义和使用

S. Morasca
{"title":"论名义、序数和其他尺度的综合指数的定义和使用","authors":"S. Morasca","doi":"10.1109/METRIC.2004.1357890","DOIUrl":null,"url":null,"abstract":"It is not uncommon in software engineering measurement to deal with attributes measured with nominal or ordinal scales. Also, it has long been debated whether it is possible to find ordinal scales for the structural complexity of software code. We address two problems: (1) the definition of concentration and dispersion indices for nominal scales; (2) the conditions under which the comparisons of arithmetic means or geometric means are meaningful for scales that are ordinal or not even ordinal.","PeriodicalId":261807,"journal":{"name":"10th International Symposium on Software Metrics, 2004. Proceedings.","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"On the definition and use of aggregate indices for nominal, ordinal, and other scales\",\"authors\":\"S. Morasca\",\"doi\":\"10.1109/METRIC.2004.1357890\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is not uncommon in software engineering measurement to deal with attributes measured with nominal or ordinal scales. Also, it has long been debated whether it is possible to find ordinal scales for the structural complexity of software code. We address two problems: (1) the definition of concentration and dispersion indices for nominal scales; (2) the conditions under which the comparisons of arithmetic means or geometric means are meaningful for scales that are ordinal or not even ordinal.\",\"PeriodicalId\":261807,\"journal\":{\"name\":\"10th International Symposium on Software Metrics, 2004. Proceedings.\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"10th International Symposium on Software Metrics, 2004. Proceedings.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/METRIC.2004.1357890\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"10th International Symposium on Software Metrics, 2004. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/METRIC.2004.1357890","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

在软件工程测量中,处理标称尺度或序数尺度测量的属性是很常见的。此外,是否有可能为软件代码的结构复杂性找到有序的尺度一直是争论的焦点。我们解决了两个问题:(1)标称尺度的浓度和分散指数的定义;(二)算术均数或几何均数的比较对序数或非序数尺度有意义的条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the definition and use of aggregate indices for nominal, ordinal, and other scales
It is not uncommon in software engineering measurement to deal with attributes measured with nominal or ordinal scales. Also, it has long been debated whether it is possible to find ordinal scales for the structural complexity of software code. We address two problems: (1) the definition of concentration and dispersion indices for nominal scales; (2) the conditions under which the comparisons of arithmetic means or geometric means are meaningful for scales that are ordinal or not even ordinal.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信