肿瘤生长预测的支持向量机方法

Xi Chen, W. Ching, Kiyoko F. Aoki-Kinoshita, K. Furuta
{"title":"肿瘤生长预测的支持向量机方法","authors":"Xi Chen, W. Ching, Kiyoko F. Aoki-Kinoshita, K. Furuta","doi":"10.1109/CSO.2010.70","DOIUrl":null,"url":null,"abstract":"In this paper, we study the application of Support Vector Machine (SVM) in the prediction of cancer growth. SVM is known to be an efficient method and it has been widely used for classification problems. Here we propose a classifier which can differentiate patients having different levels of cancer growth with a high classification rate. To further improve the accuracy of classification, we propose to determine the optimal size of the training set and perform feature selection using rfe-gist, a special function of SVM.","PeriodicalId":427481,"journal":{"name":"2010 Third International Joint Conference on Computational Science and Optimization","volume":"416 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Support Vector Machine Methods for the Prediction of Cancer Growth\",\"authors\":\"Xi Chen, W. Ching, Kiyoko F. Aoki-Kinoshita, K. Furuta\",\"doi\":\"10.1109/CSO.2010.70\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study the application of Support Vector Machine (SVM) in the prediction of cancer growth. SVM is known to be an efficient method and it has been widely used for classification problems. Here we propose a classifier which can differentiate patients having different levels of cancer growth with a high classification rate. To further improve the accuracy of classification, we propose to determine the optimal size of the training set and perform feature selection using rfe-gist, a special function of SVM.\",\"PeriodicalId\":427481,\"journal\":{\"name\":\"2010 Third International Joint Conference on Computational Science and Optimization\",\"volume\":\"416 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 Third International Joint Conference on Computational Science and Optimization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSO.2010.70\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Third International Joint Conference on Computational Science and Optimization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSO.2010.70","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

本文研究了支持向量机(SVM)在肿瘤生长预测中的应用。支持向量机是一种有效的分类方法,在分类问题中得到了广泛的应用。本文提出了一种分类器,该分类器可以区分不同肿瘤生长水平的患者,分类率高。为了进一步提高分类的准确性,我们提出利用支持向量机的特殊函数rfe-gist确定训练集的最优大小并进行特征选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Support Vector Machine Methods for the Prediction of Cancer Growth
In this paper, we study the application of Support Vector Machine (SVM) in the prediction of cancer growth. SVM is known to be an efficient method and it has been widely used for classification problems. Here we propose a classifier which can differentiate patients having different levels of cancer growth with a high classification rate. To further improve the accuracy of classification, we propose to determine the optimal size of the training set and perform feature selection using rfe-gist, a special function of SVM.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信