同质场分类

S. Veeramachaneni, H. Fujisawa, Cheng-Lin Liu, G. Nagy
{"title":"同质场分类","authors":"S. Veeramachaneni, H. Fujisawa, Cheng-Lin Liu, G. Nagy","doi":"10.1109/IWFHR.2002.1030882","DOIUrl":null,"url":null,"abstract":"Classifiers that utilize style context in co-occurring patterns increase recognition accuracy. When patterns occur as long isogenous fields, this gain should increase unless negated by parameter estimation errors that increase with field length. We show that our method achieves higher accuracy with longer input fields because it can be trained accurately We also present some ongoing work on simple heuristics to reduce computational complexity of the scheme.","PeriodicalId":114017,"journal":{"name":"Proceedings Eighth International Workshop on Frontiers in Handwriting Recognition","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Classifying isogenous fields\",\"authors\":\"S. Veeramachaneni, H. Fujisawa, Cheng-Lin Liu, G. Nagy\",\"doi\":\"10.1109/IWFHR.2002.1030882\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Classifiers that utilize style context in co-occurring patterns increase recognition accuracy. When patterns occur as long isogenous fields, this gain should increase unless negated by parameter estimation errors that increase with field length. We show that our method achieves higher accuracy with longer input fields because it can be trained accurately We also present some ongoing work on simple heuristics to reduce computational complexity of the scheme.\",\"PeriodicalId\":114017,\"journal\":{\"name\":\"Proceedings Eighth International Workshop on Frontiers in Handwriting Recognition\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings Eighth International Workshop on Frontiers in Handwriting Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWFHR.2002.1030882\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Eighth International Workshop on Frontiers in Handwriting Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWFHR.2002.1030882","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

在共发生模式中利用风格上下文的分类器可以提高识别的准确性。当模式作为长等场出现时,除非被随场长度增加的参数估计误差抵消,否则增益应该增加。我们表明,我们的方法可以在更长的输入字段下获得更高的精度,因为它可以准确地训练。我们还提出了一些正在进行的简单启发式工作,以减少方案的计算复杂性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Classifying isogenous fields
Classifiers that utilize style context in co-occurring patterns increase recognition accuracy. When patterns occur as long isogenous fields, this gain should increase unless negated by parameter estimation errors that increase with field length. We show that our method achieves higher accuracy with longer input fields because it can be trained accurately We also present some ongoing work on simple heuristics to reduce computational complexity of the scheme.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信