时变多变量气候数据集的相关性研究

Jeffrey Sukharev, Chaoli Wang, K. Ma, A. Wittenberg
{"title":"时变多变量气候数据集的相关性研究","authors":"Jeffrey Sukharev, Chaoli Wang, K. Ma, A. Wittenberg","doi":"10.1109/PACIFICVIS.2009.4906852","DOIUrl":null,"url":null,"abstract":"We present a correlation study of time-varying multivariate volumetric data sets. In most scientific disciplines, to test hypotheses and discover insights, scientists are interested in looking for connections among different variables, or among different spatial locations within a data field. In response, we propose a suite of techniques to analyze the correlations in time-varying multivariate data. Various temporal curves are utilized to organize the data and capture the temporal behaviors. To reveal patterns and find connections, we perform data clustering and segmentation using the k-means clustering and graph partitioning algorithms. We study the correlation structure of a single or a pair of variables using pointwise correlation coefficients and canonical correlation analysis. We demonstrate our approach using results on time-varying multivariate climate data sets.","PeriodicalId":133992,"journal":{"name":"2009 IEEE Pacific Visualization Symposium","volume":"409 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"49","resultStr":"{\"title\":\"Correlation study of time-varying multivariate climate data sets\",\"authors\":\"Jeffrey Sukharev, Chaoli Wang, K. Ma, A. Wittenberg\",\"doi\":\"10.1109/PACIFICVIS.2009.4906852\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a correlation study of time-varying multivariate volumetric data sets. In most scientific disciplines, to test hypotheses and discover insights, scientists are interested in looking for connections among different variables, or among different spatial locations within a data field. In response, we propose a suite of techniques to analyze the correlations in time-varying multivariate data. Various temporal curves are utilized to organize the data and capture the temporal behaviors. To reveal patterns and find connections, we perform data clustering and segmentation using the k-means clustering and graph partitioning algorithms. We study the correlation structure of a single or a pair of variables using pointwise correlation coefficients and canonical correlation analysis. We demonstrate our approach using results on time-varying multivariate climate data sets.\",\"PeriodicalId\":133992,\"journal\":{\"name\":\"2009 IEEE Pacific Visualization Symposium\",\"volume\":\"409 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-04-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"49\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE Pacific Visualization Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PACIFICVIS.2009.4906852\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Pacific Visualization Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PACIFICVIS.2009.4906852","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 49

摘要

我们提出了时变多元体积数据集的相关性研究。在大多数科学学科中,为了检验假设和发现见解,科学家们感兴趣的是寻找不同变量之间的联系,或者数据域中不同空间位置之间的联系。作为回应,我们提出了一套技术来分析时变多变量数据中的相关性。利用各种时间曲线来组织数据和捕捉时间行为。为了揭示模式并找到联系,我们使用k-means聚类和图划分算法执行数据聚类和分割。我们使用点相关系数和典型相关分析来研究单个或一对变量的相关结构。我们使用时变多变量气候数据集的结果来演示我们的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Correlation study of time-varying multivariate climate data sets
We present a correlation study of time-varying multivariate volumetric data sets. In most scientific disciplines, to test hypotheses and discover insights, scientists are interested in looking for connections among different variables, or among different spatial locations within a data field. In response, we propose a suite of techniques to analyze the correlations in time-varying multivariate data. Various temporal curves are utilized to organize the data and capture the temporal behaviors. To reveal patterns and find connections, we perform data clustering and segmentation using the k-means clustering and graph partitioning algorithms. We study the correlation structure of a single or a pair of variables using pointwise correlation coefficients and canonical correlation analysis. We demonstrate our approach using results on time-varying multivariate climate data sets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信