L. Underberg, E. Peter, Ramona Croonenbroeck, R. Kays
{"title":"工业环境下PSSS传输系统的误码性能","authors":"L. Underberg, E. Peter, Ramona Croonenbroeck, R. Kays","doi":"10.1109/WFCS.2018.8402341","DOIUrl":null,"url":null,"abstract":"In various fields of industrial communication, wired networks based on Industrial Ethernet are installed nowadays. Since these wired networks entail high installation and maintenance efforts, wireless solutions gain importance for both existing and future industrial applications. However, their reliability in terms of low latency has to be enhanced, especially in industrial environments. In this context, parallel sequence spread spectrum (PSSS) is a promising approach. Similar to an orthogonal frequency division multiplex (OFDM)-based system, properties like bandwidth and data rate as well as the multiple access can be flexibly chosen in order to adapt the PSSS system to a specific use case. In order to evaluate the PSSS physical layer's (PHY) behavior in an industrial environment, the performance of a PSSS system emulator is compared to a PSSS prototype setup. Here, the PSSS prototype setup shows the current state of functionality of the PSSS system, whereas the system emulator indicates its potential performance.","PeriodicalId":350991,"journal":{"name":"2018 14th IEEE International Workshop on Factory Communication Systems (WFCS)","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Bit error performance of a PSSS transmission system in industrial environments\",\"authors\":\"L. Underberg, E. Peter, Ramona Croonenbroeck, R. Kays\",\"doi\":\"10.1109/WFCS.2018.8402341\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In various fields of industrial communication, wired networks based on Industrial Ethernet are installed nowadays. Since these wired networks entail high installation and maintenance efforts, wireless solutions gain importance for both existing and future industrial applications. However, their reliability in terms of low latency has to be enhanced, especially in industrial environments. In this context, parallel sequence spread spectrum (PSSS) is a promising approach. Similar to an orthogonal frequency division multiplex (OFDM)-based system, properties like bandwidth and data rate as well as the multiple access can be flexibly chosen in order to adapt the PSSS system to a specific use case. In order to evaluate the PSSS physical layer's (PHY) behavior in an industrial environment, the performance of a PSSS system emulator is compared to a PSSS prototype setup. Here, the PSSS prototype setup shows the current state of functionality of the PSSS system, whereas the system emulator indicates its potential performance.\",\"PeriodicalId\":350991,\"journal\":{\"name\":\"2018 14th IEEE International Workshop on Factory Communication Systems (WFCS)\",\"volume\":\"55 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 14th IEEE International Workshop on Factory Communication Systems (WFCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WFCS.2018.8402341\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 14th IEEE International Workshop on Factory Communication Systems (WFCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WFCS.2018.8402341","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Bit error performance of a PSSS transmission system in industrial environments
In various fields of industrial communication, wired networks based on Industrial Ethernet are installed nowadays. Since these wired networks entail high installation and maintenance efforts, wireless solutions gain importance for both existing and future industrial applications. However, their reliability in terms of low latency has to be enhanced, especially in industrial environments. In this context, parallel sequence spread spectrum (PSSS) is a promising approach. Similar to an orthogonal frequency division multiplex (OFDM)-based system, properties like bandwidth and data rate as well as the multiple access can be flexibly chosen in order to adapt the PSSS system to a specific use case. In order to evaluate the PSSS physical layer's (PHY) behavior in an industrial environment, the performance of a PSSS system emulator is compared to a PSSS prototype setup. Here, the PSSS prototype setup shows the current state of functionality of the PSSS system, whereas the system emulator indicates its potential performance.