基于XFEM的TBC破坏机理有限元建模

Safa Mesut Bostancı, E. Gürses, D. Coker
{"title":"基于XFEM的TBC破坏机理有限元建模","authors":"Safa Mesut Bostancı, E. Gürses, D. Coker","doi":"10.1115/IMECE2018-86576","DOIUrl":null,"url":null,"abstract":"Thermal Barrier Coatings have been widely used in modern turbine engines to protect the nickel based metal substrate from the high temperature service conditions, 1600–1800 K. In this study, some of the failure mechanisms of typical Air Plasma Sprayed Thermal Barrier Coatings (TBC) used in after-burner structures composed of three major layers: Inconel 718 substrate, NiCrAlY based metallic bond coat (BC) and Yttria Stabilized Zirconia (YSZ) based ceramic top coat (TC) are investigated. Investigation of the cracking mechanism of TBC in terms of design and performance is very important because the behavior of TBCs on ductile metallic substrates is brittle. To this end, four-point bending experiments conducted in Kütükoğlu (2015) is analyzed by using the Extended Finite Element Method (XFEM). All the analyses are conducted with the commercial finite element software ABAQUS. Three different models with varying TC and BC thicknesses are studied under four-point bending. It is observed that multiple vertical cracks are initiated in the TC. Cracks initiate at the top of YSZ and propagate through the whole TC. It is observed that the average crack spacing increases with the increasing thickness of the TC. Numerical results are found to be consistent with the experimental results. In other words, the average crack spacing for three different models are similar with the experimental results.","PeriodicalId":119220,"journal":{"name":"Volume 1: Advances in Aerospace Technology","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Finite Element Modelling of TBC Failure Mechanisms by Using XFEM\",\"authors\":\"Safa Mesut Bostancı, E. Gürses, D. Coker\",\"doi\":\"10.1115/IMECE2018-86576\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Thermal Barrier Coatings have been widely used in modern turbine engines to protect the nickel based metal substrate from the high temperature service conditions, 1600–1800 K. In this study, some of the failure mechanisms of typical Air Plasma Sprayed Thermal Barrier Coatings (TBC) used in after-burner structures composed of three major layers: Inconel 718 substrate, NiCrAlY based metallic bond coat (BC) and Yttria Stabilized Zirconia (YSZ) based ceramic top coat (TC) are investigated. Investigation of the cracking mechanism of TBC in terms of design and performance is very important because the behavior of TBCs on ductile metallic substrates is brittle. To this end, four-point bending experiments conducted in Kütükoğlu (2015) is analyzed by using the Extended Finite Element Method (XFEM). All the analyses are conducted with the commercial finite element software ABAQUS. Three different models with varying TC and BC thicknesses are studied under four-point bending. It is observed that multiple vertical cracks are initiated in the TC. Cracks initiate at the top of YSZ and propagate through the whole TC. It is observed that the average crack spacing increases with the increasing thickness of the TC. Numerical results are found to be consistent with the experimental results. In other words, the average crack spacing for three different models are similar with the experimental results.\",\"PeriodicalId\":119220,\"journal\":{\"name\":\"Volume 1: Advances in Aerospace Technology\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 1: Advances in Aerospace Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/IMECE2018-86576\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 1: Advances in Aerospace Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/IMECE2018-86576","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

热障涂层已广泛应用于现代涡轮发动机中,以保护镍基金属基板免受1600 - 1800k高温工况的影响。本文研究了典型的空气等离子喷涂热障涂层(TBC)的失效机理,该涂层主要用于由三层结构组成的后燃烧器结构:Inconel 718衬底、NiCrAlY基金属结合层(BC)和ytria稳定氧化锆(YSZ)基陶瓷面涂层(TC)。由于TBC在延性金属基体上的脆性行为,从设计和性能角度研究TBC的开裂机理是非常重要的。为此,采用扩展有限元法(XFEM)对Kütükoğlu(2015)进行的四点弯曲实验进行分析。所有的分析都是用商用有限元软件ABAQUS进行的。在四点弯曲条件下,研究了三种不同TC和BC厚度的模型。观察到在TC中萌生了多个垂直裂纹。裂纹从YSZ顶部开始,并扩展到整个TC。结果表明,裂纹的平均间距随厚度的增加而增大。数值结果与实验结果吻合较好。换句话说,三种不同模型的平均裂缝间距与实验结果相似。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Finite Element Modelling of TBC Failure Mechanisms by Using XFEM
Thermal Barrier Coatings have been widely used in modern turbine engines to protect the nickel based metal substrate from the high temperature service conditions, 1600–1800 K. In this study, some of the failure mechanisms of typical Air Plasma Sprayed Thermal Barrier Coatings (TBC) used in after-burner structures composed of three major layers: Inconel 718 substrate, NiCrAlY based metallic bond coat (BC) and Yttria Stabilized Zirconia (YSZ) based ceramic top coat (TC) are investigated. Investigation of the cracking mechanism of TBC in terms of design and performance is very important because the behavior of TBCs on ductile metallic substrates is brittle. To this end, four-point bending experiments conducted in Kütükoğlu (2015) is analyzed by using the Extended Finite Element Method (XFEM). All the analyses are conducted with the commercial finite element software ABAQUS. Three different models with varying TC and BC thicknesses are studied under four-point bending. It is observed that multiple vertical cracks are initiated in the TC. Cracks initiate at the top of YSZ and propagate through the whole TC. It is observed that the average crack spacing increases with the increasing thickness of the TC. Numerical results are found to be consistent with the experimental results. In other words, the average crack spacing for three different models are similar with the experimental results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信