Shenghsun Cho, Mrunal Patel, Han Chen, M. Ferdman, Peter Milder
{"title":"fpga服务器全系统VM-HDL协同仿真框架","authors":"Shenghsun Cho, Mrunal Patel, Han Chen, M. Ferdman, Peter Milder","doi":"10.1145/3174243.3174269","DOIUrl":null,"url":null,"abstract":"The need for high-performance and low-power acceleration technologies in servers is driving the adoption of PCIe-connected FPGAs in datacenter environments. However, the co-development of the application software, driver, and hardware HDL for server FPGA platforms remains one of the fundamental challenges standing in the way of wide-scale adoption. The FPGA accelerator development process is plagued by a lack of comprehensive full-system simulation tools, unacceptably slow debug iteration times, and limited visibility into the software and hardware at the time of failure. In this work, we develop a framework that pairs a virtual machine and an HDL simulator to enable full-system co-simulation of a server system with a PCIe-connected FPGA. Our framework enables rapid development and debugging of unmodified application software, operating system, device drivers, and hardware design. Once debugged, neither the software nor the hardware requires any changes before being deployed in a production environment. In our case studies, we find that the co-simulation framework greatly improves debug iteration time while providing invaluable visibility into both the software and hardware components.","PeriodicalId":164936,"journal":{"name":"Proceedings of the 2018 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays","volume":"209 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"A Full-System VM-HDL Co-Simulation Framework for Servers with PCIe-Connected FPGAs\",\"authors\":\"Shenghsun Cho, Mrunal Patel, Han Chen, M. Ferdman, Peter Milder\",\"doi\":\"10.1145/3174243.3174269\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The need for high-performance and low-power acceleration technologies in servers is driving the adoption of PCIe-connected FPGAs in datacenter environments. However, the co-development of the application software, driver, and hardware HDL for server FPGA platforms remains one of the fundamental challenges standing in the way of wide-scale adoption. The FPGA accelerator development process is plagued by a lack of comprehensive full-system simulation tools, unacceptably slow debug iteration times, and limited visibility into the software and hardware at the time of failure. In this work, we develop a framework that pairs a virtual machine and an HDL simulator to enable full-system co-simulation of a server system with a PCIe-connected FPGA. Our framework enables rapid development and debugging of unmodified application software, operating system, device drivers, and hardware design. Once debugged, neither the software nor the hardware requires any changes before being deployed in a production environment. In our case studies, we find that the co-simulation framework greatly improves debug iteration time while providing invaluable visibility into both the software and hardware components.\",\"PeriodicalId\":164936,\"journal\":{\"name\":\"Proceedings of the 2018 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays\",\"volume\":\"209 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-02-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2018 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3174243.3174269\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2018 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3174243.3174269","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Full-System VM-HDL Co-Simulation Framework for Servers with PCIe-Connected FPGAs
The need for high-performance and low-power acceleration technologies in servers is driving the adoption of PCIe-connected FPGAs in datacenter environments. However, the co-development of the application software, driver, and hardware HDL for server FPGA platforms remains one of the fundamental challenges standing in the way of wide-scale adoption. The FPGA accelerator development process is plagued by a lack of comprehensive full-system simulation tools, unacceptably slow debug iteration times, and limited visibility into the software and hardware at the time of failure. In this work, we develop a framework that pairs a virtual machine and an HDL simulator to enable full-system co-simulation of a server system with a PCIe-connected FPGA. Our framework enables rapid development and debugging of unmodified application software, operating system, device drivers, and hardware design. Once debugged, neither the software nor the hardware requires any changes before being deployed in a production environment. In our case studies, we find that the co-simulation framework greatly improves debug iteration time while providing invaluable visibility into both the software and hardware components.