具有内存计算的高性能基因组分析框架

Xueqi Li, Guangming Tan, Bingchen Wang, Ninghui Sun
{"title":"具有内存计算的高性能基因组分析框架","authors":"Xueqi Li, Guangming Tan, Bingchen Wang, Ninghui Sun","doi":"10.1145/3178487.3178511","DOIUrl":null,"url":null,"abstract":"In this paper, we propose an in-memory computing framework (called GPF) that provides a set of genomic formats, APIs and a fast genomic engine for large-scale genomic data processing. Our GPF comprises two main components: (1) scalable genomic data formats and API. (2) an advanced execution engine that supports efficient compression of genomic data and eliminates redundancies in the execution engine of our GPF. We further present both system and algorithm-specific implementations for users to build genomic analysis pipeline without any acquaintance of Spark parallel programming. To test the performance of GPF, we built a WGS pipeline on top of our GPF as a test case. Our experimental data indicate that GPF completes Whole-Genome-Sequencing (WGS) analysis of 146.9G bases Human Platinum Genome in running time of 24 minutes, with over 50% parallel efficiency when used on 2048 CPU cores. Together, our GPF framework provides a fast and general engine for large-scale genomic data processing which supports in-memory computing.","PeriodicalId":193776,"journal":{"name":"Proceedings of the 23rd ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming","volume":"409 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"High-performance genomic analysis framework with in-memory computing\",\"authors\":\"Xueqi Li, Guangming Tan, Bingchen Wang, Ninghui Sun\",\"doi\":\"10.1145/3178487.3178511\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose an in-memory computing framework (called GPF) that provides a set of genomic formats, APIs and a fast genomic engine for large-scale genomic data processing. Our GPF comprises two main components: (1) scalable genomic data formats and API. (2) an advanced execution engine that supports efficient compression of genomic data and eliminates redundancies in the execution engine of our GPF. We further present both system and algorithm-specific implementations for users to build genomic analysis pipeline without any acquaintance of Spark parallel programming. To test the performance of GPF, we built a WGS pipeline on top of our GPF as a test case. Our experimental data indicate that GPF completes Whole-Genome-Sequencing (WGS) analysis of 146.9G bases Human Platinum Genome in running time of 24 minutes, with over 50% parallel efficiency when used on 2048 CPU cores. Together, our GPF framework provides a fast and general engine for large-scale genomic data processing which supports in-memory computing.\",\"PeriodicalId\":193776,\"journal\":{\"name\":\"Proceedings of the 23rd ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming\",\"volume\":\"409 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 23rd ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3178487.3178511\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 23rd ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3178487.3178511","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

在本文中,我们提出了一个内存计算框架(称为GPF),该框架为大规模基因组数据处理提供了一套基因组格式、api和快速基因组引擎。我们的GPF包括两个主要组成部分:(1)可扩展的基因组数据格式和API。(2)先进的执行引擎,支持基因组数据的有效压缩,并消除GPF执行引擎中的冗余。我们进一步提供了系统和算法特定的实现,供用户在不熟悉Spark并行编程的情况下构建基因组分析管道。为了测试GPF的性能,我们在GPF之上构建了一个WGS管道作为测试用例。我们的实验数据表明,GPF在24分钟内完成了146.9个碱基人类铂基因组的全基因组测序(WGS)分析,在2048个CPU核上运行时并行效率超过50%。总之,我们的GPF框架为大规模基因组数据处理提供了一个快速和通用的引擎,支持内存计算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
High-performance genomic analysis framework with in-memory computing
In this paper, we propose an in-memory computing framework (called GPF) that provides a set of genomic formats, APIs and a fast genomic engine for large-scale genomic data processing. Our GPF comprises two main components: (1) scalable genomic data formats and API. (2) an advanced execution engine that supports efficient compression of genomic data and eliminates redundancies in the execution engine of our GPF. We further present both system and algorithm-specific implementations for users to build genomic analysis pipeline without any acquaintance of Spark parallel programming. To test the performance of GPF, we built a WGS pipeline on top of our GPF as a test case. Our experimental data indicate that GPF completes Whole-Genome-Sequencing (WGS) analysis of 146.9G bases Human Platinum Genome in running time of 24 minutes, with over 50% parallel efficiency when used on 2048 CPU cores. Together, our GPF framework provides a fast and general engine for large-scale genomic data processing which supports in-memory computing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信