不确定性下分布鲁棒随机变分不等式的鲁棒学习与优化

Hengki Tamando Sihotang, Patrisius Michaud Felix Marsoit, Patrisia Teresa Marsoit
{"title":"不确定性下分布鲁棒随机变分不等式的鲁棒学习与优化","authors":"Hengki Tamando Sihotang, Patrisius Michaud Felix Marsoit, Patrisia Teresa Marsoit","doi":"10.35335/emod.v17i1.70","DOIUrl":null,"url":null,"abstract":"Robust learning and optimization in distributionally robust stochastic variational inequalities under uncertainty is a crucial research area that addresses the challenge of making optimal decisions in the presence of distributional ambiguity. This research explores the development of methodologies and algorithms to handle uncertainty in variational inequalities, incorporating a distributionally robust framework that considers a range of possible distributions or uncertainty sets. By minimizing the worst-case expected performance across these distributions, the proposed approaches ensure robustness and optimality in decision-making under uncertainty. The research encompasses theoretical analysis, algorithm development, and empirical evaluations to demonstrate the effectiveness of the proposed methodologies in various domains, such as portfolio optimization and supply chain management. The outcomes of this research contribute to the advancement of robust optimization techniques, enabling decision-makers to make reliable and robust decisions in complex real-world systems \n ","PeriodicalId":262913,"journal":{"name":"International Journal of Enterprise Modelling","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Robust learning and optimization in distributionally robust stochastic variational inequalities under uncertainty\",\"authors\":\"Hengki Tamando Sihotang, Patrisius Michaud Felix Marsoit, Patrisia Teresa Marsoit\",\"doi\":\"10.35335/emod.v17i1.70\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Robust learning and optimization in distributionally robust stochastic variational inequalities under uncertainty is a crucial research area that addresses the challenge of making optimal decisions in the presence of distributional ambiguity. This research explores the development of methodologies and algorithms to handle uncertainty in variational inequalities, incorporating a distributionally robust framework that considers a range of possible distributions or uncertainty sets. By minimizing the worst-case expected performance across these distributions, the proposed approaches ensure robustness and optimality in decision-making under uncertainty. The research encompasses theoretical analysis, algorithm development, and empirical evaluations to demonstrate the effectiveness of the proposed methodologies in various domains, such as portfolio optimization and supply chain management. The outcomes of this research contribute to the advancement of robust optimization techniques, enabling decision-makers to make reliable and robust decisions in complex real-world systems \\n \",\"PeriodicalId\":262913,\"journal\":{\"name\":\"International Journal of Enterprise Modelling\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Enterprise Modelling\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.35335/emod.v17i1.70\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Enterprise Modelling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35335/emod.v17i1.70","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

不确定性下分布鲁棒随机变分不等式的鲁棒学习与优化是解决分布模糊情况下最优决策问题的一个重要研究领域。本研究探讨了处理变分不等式中不确定性的方法和算法的发展,结合了一个考虑一系列可能分布或不确定性集的分布鲁棒框架。通过最小化这些分布的最坏情况预期性能,所提出的方法确保了不确定情况下决策的鲁棒性和最优性。研究包括理论分析、算法开发和实证评估,以证明所提出的方法在投资组合优化和供应链管理等各个领域的有效性。本研究的结果有助于稳健优化技术的进步,使决策者能够在复杂的现实世界系统中做出可靠和稳健的决策
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust learning and optimization in distributionally robust stochastic variational inequalities under uncertainty
Robust learning and optimization in distributionally robust stochastic variational inequalities under uncertainty is a crucial research area that addresses the challenge of making optimal decisions in the presence of distributional ambiguity. This research explores the development of methodologies and algorithms to handle uncertainty in variational inequalities, incorporating a distributionally robust framework that considers a range of possible distributions or uncertainty sets. By minimizing the worst-case expected performance across these distributions, the proposed approaches ensure robustness and optimality in decision-making under uncertainty. The research encompasses theoretical analysis, algorithm development, and empirical evaluations to demonstrate the effectiveness of the proposed methodologies in various domains, such as portfolio optimization and supply chain management. The outcomes of this research contribute to the advancement of robust optimization techniques, enabling decision-makers to make reliable and robust decisions in complex real-world systems  
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信