{"title":"两浮式海上风力机机距变化时的气水动力学数值研究","authors":"Y. Huang, D. Wan","doi":"10.1115/omae2019-95520","DOIUrl":null,"url":null,"abstract":"\n To investigate the influence of the inter-turbine spacing on the performance of the floating offshore wind turbine (FOWT) in the floating wind farm, coupled aero-hydrodynamic simulations of two spar-type FOWT models with inter-turbine spacing variation under shear wind and regular wave conditions are performed in the present work. An unsteady actuator line model (UALM) is embedded into in-house code naoe-FOAM-SJTU to establish a fully coupled CFD analysis tool for numerical simulations of FOWTs. From the simulation results, the unsteady aerodynamic power and thrust are obtained, and the hydrodynamic responses including the six-degree-of-freedom motions and mooring tensions are available. Detailed flow visualizations of wake velocity profiles and vortex structures are also illustrated. The coupled performance of floating offshore wind turbines with inter-turbine spacing variation are analyzed, and the influences of inter-turbine spacing on aero-hydrodynamic characteristics of coupled wind-wave flow field are discussed. It is found that the power output of downstream wind turbine increases with inter-turbine spacing. Coupled aero-hydrodynamic characteristics of flow filed are significantly affected by inter-turbine spacing.","PeriodicalId":306681,"journal":{"name":"Volume 10: Ocean Renewable Energy","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Numerical Study on Aero-Hydrodynamics With Inter-Turbine Spacing Variation for Two Floating Offshore Wind Turbines\",\"authors\":\"Y. Huang, D. Wan\",\"doi\":\"10.1115/omae2019-95520\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n To investigate the influence of the inter-turbine spacing on the performance of the floating offshore wind turbine (FOWT) in the floating wind farm, coupled aero-hydrodynamic simulations of two spar-type FOWT models with inter-turbine spacing variation under shear wind and regular wave conditions are performed in the present work. An unsteady actuator line model (UALM) is embedded into in-house code naoe-FOAM-SJTU to establish a fully coupled CFD analysis tool for numerical simulations of FOWTs. From the simulation results, the unsteady aerodynamic power and thrust are obtained, and the hydrodynamic responses including the six-degree-of-freedom motions and mooring tensions are available. Detailed flow visualizations of wake velocity profiles and vortex structures are also illustrated. The coupled performance of floating offshore wind turbines with inter-turbine spacing variation are analyzed, and the influences of inter-turbine spacing on aero-hydrodynamic characteristics of coupled wind-wave flow field are discussed. It is found that the power output of downstream wind turbine increases with inter-turbine spacing. Coupled aero-hydrodynamic characteristics of flow filed are significantly affected by inter-turbine spacing.\",\"PeriodicalId\":306681,\"journal\":{\"name\":\"Volume 10: Ocean Renewable Energy\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 10: Ocean Renewable Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/omae2019-95520\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 10: Ocean Renewable Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/omae2019-95520","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Numerical Study on Aero-Hydrodynamics With Inter-Turbine Spacing Variation for Two Floating Offshore Wind Turbines
To investigate the influence of the inter-turbine spacing on the performance of the floating offshore wind turbine (FOWT) in the floating wind farm, coupled aero-hydrodynamic simulations of two spar-type FOWT models with inter-turbine spacing variation under shear wind and regular wave conditions are performed in the present work. An unsteady actuator line model (UALM) is embedded into in-house code naoe-FOAM-SJTU to establish a fully coupled CFD analysis tool for numerical simulations of FOWTs. From the simulation results, the unsteady aerodynamic power and thrust are obtained, and the hydrodynamic responses including the six-degree-of-freedom motions and mooring tensions are available. Detailed flow visualizations of wake velocity profiles and vortex structures are also illustrated. The coupled performance of floating offshore wind turbines with inter-turbine spacing variation are analyzed, and the influences of inter-turbine spacing on aero-hydrodynamic characteristics of coupled wind-wave flow field are discussed. It is found that the power output of downstream wind turbine increases with inter-turbine spacing. Coupled aero-hydrodynamic characteristics of flow filed are significantly affected by inter-turbine spacing.