相差显微镜时间序列图像的细胞提取方法

M. Tamura, Toshiyuki Tanaka
{"title":"相差显微镜时间序列图像的细胞提取方法","authors":"M. Tamura, Toshiyuki Tanaka","doi":"10.1109/CCATS.2015.28","DOIUrl":null,"url":null,"abstract":"In this study, we propose cell extraction method for solving the problem that previous research and common method cause extra segmentation and recognize single cell as plural cells. Proposed method consists of three steps. First, we separate the cell area from background of the image. Second, we classify the cell area into two groups by the size of area. Third, we extract cells from cell area classified each groups. As a result, we can decrease the number of extra segmentation of cell in the image.","PeriodicalId":433684,"journal":{"name":"2015 International Conference on Computer Application Technologies","volume":"407 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cell Extraction Method from Time-Series Image of Phase Contrast Microscope\",\"authors\":\"M. Tamura, Toshiyuki Tanaka\",\"doi\":\"10.1109/CCATS.2015.28\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, we propose cell extraction method for solving the problem that previous research and common method cause extra segmentation and recognize single cell as plural cells. Proposed method consists of three steps. First, we separate the cell area from background of the image. Second, we classify the cell area into two groups by the size of area. Third, we extract cells from cell area classified each groups. As a result, we can decrease the number of extra segmentation of cell in the image.\",\"PeriodicalId\":433684,\"journal\":{\"name\":\"2015 International Conference on Computer Application Technologies\",\"volume\":\"407 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Conference on Computer Application Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCATS.2015.28\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Computer Application Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCATS.2015.28","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本研究中,我们提出了细胞提取方法,以解决以往研究和常用方法造成的额外分割,并将单个细胞识别为多个细胞的问题。该方法分为三个步骤。首先,我们将细胞区域从图像的背景中分离出来。其次,我们根据面积的大小将细胞区域分为两组。第三,从细胞面积中提取细胞,将细胞划分为各组。这样可以减少图像中细胞的额外分割次数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cell Extraction Method from Time-Series Image of Phase Contrast Microscope
In this study, we propose cell extraction method for solving the problem that previous research and common method cause extra segmentation and recognize single cell as plural cells. Proposed method consists of three steps. First, we separate the cell area from background of the image. Second, we classify the cell area into two groups by the size of area. Third, we extract cells from cell area classified each groups. As a result, we can decrease the number of extra segmentation of cell in the image.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信