自动调整射频识别和标记算法

Bruno Martins, U. Rau
{"title":"自动调整射频识别和标记算法","authors":"Bruno Martins, U. Rau","doi":"10.1109/RFINT.2016.7833532","DOIUrl":null,"url":null,"abstract":"It is known that Radio Frequency Interference affects a significant fraction of data from radio telescopes. These bad data must be carefully identified and eliminated before further processing. Current approaches require manual labor for tuning the parameters of auto flag algorithms or even marking individual regions of the data on a visual display. This paper presents a technique that can help automate the process of tuning auto flag parameters using an approach based on Artificial Intelligence, specifically on Evolutionary Computing. We describe a Genetic Algorithm that simulates the tuning of parameters throughout several generations, where no input is necessary and it produces a set of parameters that can be used in conjunction with the existing algorithms to flag the data. Experiment results demonstrate that we were able to successfully tune two auto flag algorithms for some low-frequency VLA (Very Large Array) datasets containing types of RFI that would otherwise have required manual tuning.","PeriodicalId":298772,"journal":{"name":"2016 Radio Frequency Interference (RFI)","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Automated tuning of RFI identification and flagging algorithms\",\"authors\":\"Bruno Martins, U. Rau\",\"doi\":\"10.1109/RFINT.2016.7833532\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is known that Radio Frequency Interference affects a significant fraction of data from radio telescopes. These bad data must be carefully identified and eliminated before further processing. Current approaches require manual labor for tuning the parameters of auto flag algorithms or even marking individual regions of the data on a visual display. This paper presents a technique that can help automate the process of tuning auto flag parameters using an approach based on Artificial Intelligence, specifically on Evolutionary Computing. We describe a Genetic Algorithm that simulates the tuning of parameters throughout several generations, where no input is necessary and it produces a set of parameters that can be used in conjunction with the existing algorithms to flag the data. Experiment results demonstrate that we were able to successfully tune two auto flag algorithms for some low-frequency VLA (Very Large Array) datasets containing types of RFI that would otherwise have required manual tuning.\",\"PeriodicalId\":298772,\"journal\":{\"name\":\"2016 Radio Frequency Interference (RFI)\",\"volume\":\"73 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 Radio Frequency Interference (RFI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RFINT.2016.7833532\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Radio Frequency Interference (RFI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RFINT.2016.7833532","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

众所周知,无线电频率干扰影响了射电望远镜的很大一部分数据。在进一步处理之前,必须仔细识别和消除这些不良数据。目前的方法需要人工来调整自动标记算法的参数,甚至在视觉显示上标记数据的单个区域。本文提出了一种基于人工智能,特别是进化计算的方法,可以帮助自动调整自动标志参数的过程。我们描述了一种遗传算法,它模拟了几代参数的调优,其中不需要输入,它产生一组参数,可以与现有算法结合使用来标记数据。实验结果表明,我们能够成功地为一些低频VLA(甚大阵列)数据集调整两种自动标记算法,这些数据集包含RFI类型,否则需要手动调整。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automated tuning of RFI identification and flagging algorithms
It is known that Radio Frequency Interference affects a significant fraction of data from radio telescopes. These bad data must be carefully identified and eliminated before further processing. Current approaches require manual labor for tuning the parameters of auto flag algorithms or even marking individual regions of the data on a visual display. This paper presents a technique that can help automate the process of tuning auto flag parameters using an approach based on Artificial Intelligence, specifically on Evolutionary Computing. We describe a Genetic Algorithm that simulates the tuning of parameters throughout several generations, where no input is necessary and it produces a set of parameters that can be used in conjunction with the existing algorithms to flag the data. Experiment results demonstrate that we were able to successfully tune two auto flag algorithms for some low-frequency VLA (Very Large Array) datasets containing types of RFI that would otherwise have required manual tuning.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信