人体活动识别的紧急第一响应者通过身体穿戴惯性传感器

Sebastian Scheurer, Salvatore Tedesco, Kenneth N. Brown, B. O’flynn
{"title":"人体活动识别的紧急第一响应者通过身体穿戴惯性传感器","authors":"Sebastian Scheurer, Salvatore Tedesco, Kenneth N. Brown, B. O’flynn","doi":"10.1109/BSN.2017.7935994","DOIUrl":null,"url":null,"abstract":"Every year over 75 000 firefighters are injured and 159 die in the line of duty. Some of these accidents could be averted if first response team leaders had better information about the situation on the ground. The SAFESENS project is developing a novel monitoring system for first responders designed to provide response team leaders with timely and reliable information about their firefighters' status during operations, based on data from wireless inertial measurement units. In this paper we investigate if Gradient Boosted Trees (GBT) could be used for recognising 17 activities, selected in consultation with first responders, from inertial data. By arranging these into more general groups we generate three additional classification problems which are used for comparing GBT with k-Nearest Neighbours (kNN) and Support Vector Machines (SVM). The results show that GBT outperforms both kNN and SVM for three of these four problems with a mean absolute error of less than 7%, which is distributed more evenly across the target activities than that from either kNN or SVM.","PeriodicalId":249670,"journal":{"name":"2017 IEEE 14th International Conference on Wearable and Implantable Body Sensor Networks (BSN)","volume":"353 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":"{\"title\":\"Human activity recognition for emergency first responders via body-worn inertial sensors\",\"authors\":\"Sebastian Scheurer, Salvatore Tedesco, Kenneth N. Brown, B. O’flynn\",\"doi\":\"10.1109/BSN.2017.7935994\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Every year over 75 000 firefighters are injured and 159 die in the line of duty. Some of these accidents could be averted if first response team leaders had better information about the situation on the ground. The SAFESENS project is developing a novel monitoring system for first responders designed to provide response team leaders with timely and reliable information about their firefighters' status during operations, based on data from wireless inertial measurement units. In this paper we investigate if Gradient Boosted Trees (GBT) could be used for recognising 17 activities, selected in consultation with first responders, from inertial data. By arranging these into more general groups we generate three additional classification problems which are used for comparing GBT with k-Nearest Neighbours (kNN) and Support Vector Machines (SVM). The results show that GBT outperforms both kNN and SVM for three of these four problems with a mean absolute error of less than 7%, which is distributed more evenly across the target activities than that from either kNN or SVM.\",\"PeriodicalId\":249670,\"journal\":{\"name\":\"2017 IEEE 14th International Conference on Wearable and Implantable Body Sensor Networks (BSN)\",\"volume\":\"353 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"32\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 14th International Conference on Wearable and Implantable Body Sensor Networks (BSN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BSN.2017.7935994\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 14th International Conference on Wearable and Implantable Body Sensor Networks (BSN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BSN.2017.7935994","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 32

摘要

每年有超过75,000名消防员受伤,159名消防员在执行任务时死亡。如果第一反应小组的领导人对现场情况有更好的了解,其中一些事故是可以避免的。SAFESENS项目正在为第一反应者开发一种新型监测系统,旨在根据无线惯性测量单元的数据,为反应小组负责人提供有关其消防员在操作期间状态的及时可靠信息。在本文中,我们研究了梯度增强树(GBT)是否可以用于识别17种活动,这些活动是在与第一响应者协商后从惯性数据中选择的。通过将这些问题安排到更一般的组中,我们生成了三个额外的分类问题,用于将GBT与k-近邻(kNN)和支持向量机(SVM)进行比较。结果表明,GBT在这四个问题中的三个问题上都优于kNN和SVM,平均绝对误差小于7%,并且在目标活动上的分布比kNN或SVM更均匀。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Human activity recognition for emergency first responders via body-worn inertial sensors
Every year over 75 000 firefighters are injured and 159 die in the line of duty. Some of these accidents could be averted if first response team leaders had better information about the situation on the ground. The SAFESENS project is developing a novel monitoring system for first responders designed to provide response team leaders with timely and reliable information about their firefighters' status during operations, based on data from wireless inertial measurement units. In this paper we investigate if Gradient Boosted Trees (GBT) could be used for recognising 17 activities, selected in consultation with first responders, from inertial data. By arranging these into more general groups we generate three additional classification problems which are used for comparing GBT with k-Nearest Neighbours (kNN) and Support Vector Machines (SVM). The results show that GBT outperforms both kNN and SVM for three of these four problems with a mean absolute error of less than 7%, which is distributed more evenly across the target activities than that from either kNN or SVM.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信