最优重要抽样密度与多保真度Kriging模型耦合的可靠性分析方法

Jiayu Xie, Zongrui Tian, Pengpeng Zhi, Yadong Zhao
{"title":"最优重要抽样密度与多保真度Kriging模型耦合的可靠性分析方法","authors":"Jiayu Xie, Zongrui Tian, Pengpeng Zhi, Yadong Zhao","doi":"10.17531/ein/161893","DOIUrl":null,"url":null,"abstract":"The commonly used reliability analysis approaches for Kriging-based\nmodels are usually conducted based on high-fidelity Kriging models.\nHowever, high-fidelity surrogate models are commonly costly.\nTherefore, in order to balance the calculation expense and calculation\ntime of the surrogate model, this paper proposes a multi-fidelity Kriging\nmodel reliability analysis approach with coupled optimal important\nsampling density (OISD+MFK). First, the MEI learning function is\nproposed considering the training sample distance, model computation\ncost, expected improvement function, and model relevance. Second, a\ndynamic stopping condition is proposed that takes into account the\nfailure probability estimation error. Finally, the optimal importance\nsampling density is incorporated into the reliability analysis process,\nwhich can effectively reduce failure probability estimation error. The\nresults of the study show that the approach proposed in this paper can\nreduce the calculation cost while outputting relatively accurate failure\nprobability evaluation results.","PeriodicalId":335030,"journal":{"name":"Eksploatacja i Niezawodność – Maintenance and Reliability","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Reliability analysis method of coupling optimal importance sampling density and multi-fidelity Kriging model\",\"authors\":\"Jiayu Xie, Zongrui Tian, Pengpeng Zhi, Yadong Zhao\",\"doi\":\"10.17531/ein/161893\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The commonly used reliability analysis approaches for Kriging-based\\nmodels are usually conducted based on high-fidelity Kriging models.\\nHowever, high-fidelity surrogate models are commonly costly.\\nTherefore, in order to balance the calculation expense and calculation\\ntime of the surrogate model, this paper proposes a multi-fidelity Kriging\\nmodel reliability analysis approach with coupled optimal important\\nsampling density (OISD+MFK). First, the MEI learning function is\\nproposed considering the training sample distance, model computation\\ncost, expected improvement function, and model relevance. Second, a\\ndynamic stopping condition is proposed that takes into account the\\nfailure probability estimation error. Finally, the optimal importance\\nsampling density is incorporated into the reliability analysis process,\\nwhich can effectively reduce failure probability estimation error. The\\nresults of the study show that the approach proposed in this paper can\\nreduce the calculation cost while outputting relatively accurate failure\\nprobability evaluation results.\",\"PeriodicalId\":335030,\"journal\":{\"name\":\"Eksploatacja i Niezawodność – Maintenance and Reliability\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Eksploatacja i Niezawodność – Maintenance and Reliability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17531/ein/161893\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eksploatacja i Niezawodność – Maintenance and Reliability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17531/ein/161893","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

基于克里格模型的常用可靠性分析方法通常是基于高保真克里格模型进行的。然而,高保真代理模型通常是昂贵的。因此,为了平衡代理模型的计算费用和计算时间,本文提出了一种耦合最优重要采样密度(OISD+MFK)的多保真度Krigingmodel可靠性分析方法。首先,考虑训练样本距离、模型计算成本、期望改进函数和模型相关性,提出了MEI学习函数。其次,提出了考虑故障概率估计误差的动态停车条件。最后,将最优重要采样密度纳入可靠性分析过程,可有效降低失效概率估计误差。研究结果表明,本文提出的方法可以在降低计算成本的同时,输出相对准确的失效概率评估结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reliability analysis method of coupling optimal importance sampling density and multi-fidelity Kriging model
The commonly used reliability analysis approaches for Kriging-based models are usually conducted based on high-fidelity Kriging models. However, high-fidelity surrogate models are commonly costly. Therefore, in order to balance the calculation expense and calculation time of the surrogate model, this paper proposes a multi-fidelity Kriging model reliability analysis approach with coupled optimal important sampling density (OISD+MFK). First, the MEI learning function is proposed considering the training sample distance, model computation cost, expected improvement function, and model relevance. Second, a dynamic stopping condition is proposed that takes into account the failure probability estimation error. Finally, the optimal importance sampling density is incorporated into the reliability analysis process, which can effectively reduce failure probability estimation error. The results of the study show that the approach proposed in this paper can reduce the calculation cost while outputting relatively accurate failure probability evaluation results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信