通过深度学习的有损源代码编码

Qing Li, Yang Chen
{"title":"通过深度学习的有损源代码编码","authors":"Qing Li, Yang Chen","doi":"10.1109/DCC.2019.00009","DOIUrl":null,"url":null,"abstract":"Motivated by a recent work of learning rate distortion approaching posterior via Restricted Boltzmann Machines, we generalize the result to Deep Belief Networks and propose a deep learning based lossy compression for stationary ergodic sources. The compression algorithm consists of two stages, a training stage, which is to learn the posterior with the training data of the same class as the source, and a compression/reproduction stage, which consists of a lossless compression and a lossless reproduction. The theoretical result shows that our algorithm asymptotically achieves the optimum rate-distortion function for stationary ergodic sources, and the experimental results outperform the reported best results.","PeriodicalId":167723,"journal":{"name":"2019 Data Compression Conference (DCC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Lossy Source Coding via Deep Learning\",\"authors\":\"Qing Li, Yang Chen\",\"doi\":\"10.1109/DCC.2019.00009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Motivated by a recent work of learning rate distortion approaching posterior via Restricted Boltzmann Machines, we generalize the result to Deep Belief Networks and propose a deep learning based lossy compression for stationary ergodic sources. The compression algorithm consists of two stages, a training stage, which is to learn the posterior with the training data of the same class as the source, and a compression/reproduction stage, which consists of a lossless compression and a lossless reproduction. The theoretical result shows that our algorithm asymptotically achieves the optimum rate-distortion function for stationary ergodic sources, and the experimental results outperform the reported best results.\",\"PeriodicalId\":167723,\"journal\":{\"name\":\"2019 Data Compression Conference (DCC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 Data Compression Conference (DCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DCC.2019.00009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Data Compression Conference (DCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DCC.2019.00009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

受最近通过受限玻尔兹曼机逼近后验的学习率失真研究的启发,我们将结果推广到深度信念网络,并提出了一种基于深度学习的平稳遍历源有损压缩方法。压缩算法包括两个阶段,一个是训练阶段,即使用与源相同类别的训练数据学习后验,另一个是压缩/复制阶段,即由无损压缩和无损复制组成。理论结果表明,该算法渐近地获得了平稳遍历源的最优率失真函数,实验结果优于已有的最佳结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lossy Source Coding via Deep Learning
Motivated by a recent work of learning rate distortion approaching posterior via Restricted Boltzmann Machines, we generalize the result to Deep Belief Networks and propose a deep learning based lossy compression for stationary ergodic sources. The compression algorithm consists of two stages, a training stage, which is to learn the posterior with the training data of the same class as the source, and a compression/reproduction stage, which consists of a lossless compression and a lossless reproduction. The theoretical result shows that our algorithm asymptotically achieves the optimum rate-distortion function for stationary ergodic sources, and the experimental results outperform the reported best results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信