能源消费中的欺诈检测:一种监督方法

Bernat Coma-Puig, J. Carmona, Ricard Gavaldà, Santiago Alcoverro, Victor Martin
{"title":"能源消费中的欺诈检测:一种监督方法","authors":"Bernat Coma-Puig, J. Carmona, Ricard Gavaldà, Santiago Alcoverro, Victor Martin","doi":"10.1109/DSAA.2016.19","DOIUrl":null,"url":null,"abstract":"Data from utility meters (gas, electricity, water) is a rich source of information for distribution companies, beyond billing. In this paper we present a supervised technique, which primarily but not only feeds on meter information, to detect meter anomalies and customer fraudulent behavior (meter tampering). Our system detects anomalous meter readings on the basis of models built using machine learning techniques on past data. Unlike most previous work, it can incrementally incorporate the result of field checks to grow the database of fraud and non-fraud patterns, therefore increasing model precision over time and potentially adapting to emerging fraud patterns. The full system has been developed with a company providing electricity and gas and already used to carry out several field checks, with large improvements in fraud detection over the previous checks which used simpler techniques.","PeriodicalId":193885,"journal":{"name":"2016 IEEE International Conference on Data Science and Advanced Analytics (DSAA)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"55","resultStr":"{\"title\":\"Fraud Detection in Energy Consumption: A Supervised Approach\",\"authors\":\"Bernat Coma-Puig, J. Carmona, Ricard Gavaldà, Santiago Alcoverro, Victor Martin\",\"doi\":\"10.1109/DSAA.2016.19\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Data from utility meters (gas, electricity, water) is a rich source of information for distribution companies, beyond billing. In this paper we present a supervised technique, which primarily but not only feeds on meter information, to detect meter anomalies and customer fraudulent behavior (meter tampering). Our system detects anomalous meter readings on the basis of models built using machine learning techniques on past data. Unlike most previous work, it can incrementally incorporate the result of field checks to grow the database of fraud and non-fraud patterns, therefore increasing model precision over time and potentially adapting to emerging fraud patterns. The full system has been developed with a company providing electricity and gas and already used to carry out several field checks, with large improvements in fraud detection over the previous checks which used simpler techniques.\",\"PeriodicalId\":193885,\"journal\":{\"name\":\"2016 IEEE International Conference on Data Science and Advanced Analytics (DSAA)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"55\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Conference on Data Science and Advanced Analytics (DSAA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DSAA.2016.19\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Data Science and Advanced Analytics (DSAA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DSAA.2016.19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 55

摘要

来自公用事业仪表(燃气、电力、水)的数据是配电公司的丰富信息来源,而不仅仅是账单。在本文中,我们提出了一种监督技术,该技术主要但不仅限于以电表信息为依据,来检测电表异常和客户欺诈行为(电表篡改)。我们的系统基于使用机器学习技术在过去数据上建立的模型来检测异常的仪表读数。与大多数以前的工作不同,它可以逐步合并现场检查的结果,以增加欺诈和非欺诈模式的数据库,因此随着时间的推移提高模型精度,并有可能适应新出现的欺诈模式。整个系统是与一家提供电力和天然气的公司合作开发的,并已用于进行几次现场检查,与以前使用更简单技术的检查相比,在欺诈检测方面有了很大改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fraud Detection in Energy Consumption: A Supervised Approach
Data from utility meters (gas, electricity, water) is a rich source of information for distribution companies, beyond billing. In this paper we present a supervised technique, which primarily but not only feeds on meter information, to detect meter anomalies and customer fraudulent behavior (meter tampering). Our system detects anomalous meter readings on the basis of models built using machine learning techniques on past data. Unlike most previous work, it can incrementally incorporate the result of field checks to grow the database of fraud and non-fraud patterns, therefore increasing model precision over time and potentially adapting to emerging fraud patterns. The full system has been developed with a company providing electricity and gas and already used to carry out several field checks, with large improvements in fraud detection over the previous checks which used simpler techniques.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信