{"title":"转运港口堆场管理","authors":"Xinjia Jiang, L. Lee, E. P. Chew, K. Tan","doi":"10.1109/CoASE.2013.6653898","DOIUrl":null,"url":null,"abstract":"In transshipment ports, the loading and unloading activities are both concentrated and inevitably happen at the same time. Thus the storage yard management is more challenging than that in a general import-export container terminal. Our studies on storage yard management can be divided into three phases, namely yard sectioning, yard template planning and space allocation. This paper focuses on the short-term space allocation from an integrated perspective, where all yard resources are considered. A flexible space-sharing strategy is used in this study to improve the space utilization while storing the containers according to their destination vessel for a faster loading process. A MIP model is formulated for space allocation considering the storage space, yard cranes and prime movers. Numerical experiments show that the MIP model can effectively control violations in short-term space allocation. And the flexible space-sharing strategy can increase the storage capacity and make the storage yard more adaptable to fluctuations caused by vessel delay.","PeriodicalId":191166,"journal":{"name":"2013 IEEE International Conference on Automation Science and Engineering (CASE)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Storage yard management for transshipment ports\",\"authors\":\"Xinjia Jiang, L. Lee, E. P. Chew, K. Tan\",\"doi\":\"10.1109/CoASE.2013.6653898\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In transshipment ports, the loading and unloading activities are both concentrated and inevitably happen at the same time. Thus the storage yard management is more challenging than that in a general import-export container terminal. Our studies on storage yard management can be divided into three phases, namely yard sectioning, yard template planning and space allocation. This paper focuses on the short-term space allocation from an integrated perspective, where all yard resources are considered. A flexible space-sharing strategy is used in this study to improve the space utilization while storing the containers according to their destination vessel for a faster loading process. A MIP model is formulated for space allocation considering the storage space, yard cranes and prime movers. Numerical experiments show that the MIP model can effectively control violations in short-term space allocation. And the flexible space-sharing strategy can increase the storage capacity and make the storage yard more adaptable to fluctuations caused by vessel delay.\",\"PeriodicalId\":191166,\"journal\":{\"name\":\"2013 IEEE International Conference on Automation Science and Engineering (CASE)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE International Conference on Automation Science and Engineering (CASE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CoASE.2013.6653898\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Automation Science and Engineering (CASE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CoASE.2013.6653898","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
In transshipment ports, the loading and unloading activities are both concentrated and inevitably happen at the same time. Thus the storage yard management is more challenging than that in a general import-export container terminal. Our studies on storage yard management can be divided into three phases, namely yard sectioning, yard template planning and space allocation. This paper focuses on the short-term space allocation from an integrated perspective, where all yard resources are considered. A flexible space-sharing strategy is used in this study to improve the space utilization while storing the containers according to their destination vessel for a faster loading process. A MIP model is formulated for space allocation considering the storage space, yard cranes and prime movers. Numerical experiments show that the MIP model can effectively control violations in short-term space allocation. And the flexible space-sharing strategy can increase the storage capacity and make the storage yard more adaptable to fluctuations caused by vessel delay.