Rujira Jullapak, A. Thammano, Boonprasert Surakratanasakul
{"title":"神经网络分类模型的自适应学习率","authors":"Rujira Jullapak, A. Thammano, Boonprasert Surakratanasakul","doi":"10.1109/ICSEC56337.2022.10049365","DOIUrl":null,"url":null,"abstract":"Imbalanced data cause prediction inaccuracy of the classification model. Two types of techniques have been devised to address this problem: pre-processing data before training a classification model and adjusting the classification algorithm. This study, which introduced the adaptive learning rate into a backpropagation neural network algorithm, is of the latter type. The learning rate was adjusted in each iterative learning cycle: the learning rate is increased for the data class with fewer samples and decreased for the data class with more samples. K-fold cross-validation was used to test the effectiveness of the prediction model on 10 datasets. The results showed that the proposed ZMP algorithm outperformed the original backpropagation neural network on 6 datasets; the improvement ranged from 2.24% to 20.22%. Moreover, on the other 4 datasets, even though the proposed technique provided less accurate predictions, the differences were very slight.","PeriodicalId":430850,"journal":{"name":"2022 26th International Computer Science and Engineering Conference (ICSEC)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptive Learning Rate For Neural Network Classification Model\",\"authors\":\"Rujira Jullapak, A. Thammano, Boonprasert Surakratanasakul\",\"doi\":\"10.1109/ICSEC56337.2022.10049365\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Imbalanced data cause prediction inaccuracy of the classification model. Two types of techniques have been devised to address this problem: pre-processing data before training a classification model and adjusting the classification algorithm. This study, which introduced the adaptive learning rate into a backpropagation neural network algorithm, is of the latter type. The learning rate was adjusted in each iterative learning cycle: the learning rate is increased for the data class with fewer samples and decreased for the data class with more samples. K-fold cross-validation was used to test the effectiveness of the prediction model on 10 datasets. The results showed that the proposed ZMP algorithm outperformed the original backpropagation neural network on 6 datasets; the improvement ranged from 2.24% to 20.22%. Moreover, on the other 4 datasets, even though the proposed technique provided less accurate predictions, the differences were very slight.\",\"PeriodicalId\":430850,\"journal\":{\"name\":\"2022 26th International Computer Science and Engineering Conference (ICSEC)\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 26th International Computer Science and Engineering Conference (ICSEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSEC56337.2022.10049365\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 26th International Computer Science and Engineering Conference (ICSEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSEC56337.2022.10049365","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Adaptive Learning Rate For Neural Network Classification Model
Imbalanced data cause prediction inaccuracy of the classification model. Two types of techniques have been devised to address this problem: pre-processing data before training a classification model and adjusting the classification algorithm. This study, which introduced the adaptive learning rate into a backpropagation neural network algorithm, is of the latter type. The learning rate was adjusted in each iterative learning cycle: the learning rate is increased for the data class with fewer samples and decreased for the data class with more samples. K-fold cross-validation was used to test the effectiveness of the prediction model on 10 datasets. The results showed that the proposed ZMP algorithm outperformed the original backpropagation neural network on 6 datasets; the improvement ranged from 2.24% to 20.22%. Moreover, on the other 4 datasets, even though the proposed technique provided less accurate predictions, the differences were very slight.