主动学习最大化ROC曲线下的面积

Matt Culver, Kun Deng, S. Scott
{"title":"主动学习最大化ROC曲线下的面积","authors":"Matt Culver, Kun Deng, S. Scott","doi":"10.1109/ICDM.2006.12","DOIUrl":null,"url":null,"abstract":"In active learning, a machine learning algorithm is given an unlabeled set of examples U, and is allowed to request labels for a relatively small subset of U to use for training. The goal is then to judiciously choose which examples in U to have labeled in order to optimize some performance criterion, e.g. classification accuracy. We study how active learning affects AUC. We examine two existing algorithms from the literature and present our own active learning algorithms designed to maximize the AUC of the hypothesis. One of our algorithms was consistently the top performer, and Closest Sampling from the literature often came in second behind it. When good posterior probability estimates were available, our heuristics were by far the best.","PeriodicalId":356443,"journal":{"name":"Sixth International Conference on Data Mining (ICDM'06)","volume":"310 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"39","resultStr":"{\"title\":\"Active Learning to Maximize Area Under the ROC Curve\",\"authors\":\"Matt Culver, Kun Deng, S. Scott\",\"doi\":\"10.1109/ICDM.2006.12\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In active learning, a machine learning algorithm is given an unlabeled set of examples U, and is allowed to request labels for a relatively small subset of U to use for training. The goal is then to judiciously choose which examples in U to have labeled in order to optimize some performance criterion, e.g. classification accuracy. We study how active learning affects AUC. We examine two existing algorithms from the literature and present our own active learning algorithms designed to maximize the AUC of the hypothesis. One of our algorithms was consistently the top performer, and Closest Sampling from the literature often came in second behind it. When good posterior probability estimates were available, our heuristics were by far the best.\",\"PeriodicalId\":356443,\"journal\":{\"name\":\"Sixth International Conference on Data Mining (ICDM'06)\",\"volume\":\"310 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"39\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sixth International Conference on Data Mining (ICDM'06)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDM.2006.12\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sixth International Conference on Data Mining (ICDM'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2006.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 39

摘要

在主动学习中,机器学习算法被给予一组未标记的示例U,并允许为相对较小的U子集请求标签以用于训练。然后,目标是明智地选择U中的哪些示例进行标记,以优化某些性能标准,例如分类准确性。我们研究主动学习如何影响AUC。我们从文献中研究了两种现有的算法,并提出了我们自己的主动学习算法,旨在最大化假设的AUC。我们的一种算法一直是表现最好的,而文献中的“最接近抽样”(nearest Sampling)常常排在第二位。当良好的后验概率估计可用时,我们的启发式是迄今为止最好的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Active Learning to Maximize Area Under the ROC Curve
In active learning, a machine learning algorithm is given an unlabeled set of examples U, and is allowed to request labels for a relatively small subset of U to use for training. The goal is then to judiciously choose which examples in U to have labeled in order to optimize some performance criterion, e.g. classification accuracy. We study how active learning affects AUC. We examine two existing algorithms from the literature and present our own active learning algorithms designed to maximize the AUC of the hypothesis. One of our algorithms was consistently the top performer, and Closest Sampling from the literature often came in second behind it. When good posterior probability estimates were available, our heuristics were by far the best.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信