{"title":"丘脑底核神经元局部场诱发电位的脑深部刺激伪影噪声去除","authors":"V. R. Raju","doi":"10.18231/j.ijn.2022.027","DOIUrl":null,"url":null,"abstract":"This study presents a noise-removal technique for the microelectrode signals of subthalamic-nuclei (STN) neurons acquired by MER machine through electrical stimulations with subthalamic-nuclei deep brain stimulation/or stimulator (STN-DBS) in local field potentials (LFPs). We proposed a novel method for the removal of induced stimuli-artifacts triggered by pulse-generators differed in typical LFPs (low-frequency potentials) signals. The method is processed and tested for accuracy and computed for execution in vitro-states. Results indicated that the stimulus-artifacts are well suppressed by this method. And also it is tested in vivo-states of Parkinson’s disease (PD) subjects (patients). It is applied to process signals of LFPs gathered intra operatively from PDs to preliminarily explore quantitative dependencies-of beta-band synchronous variations within STN, DBS parameters (stimulus-intensity, stimulus-voltage, frequency, and amplitude pulse-width). Findings showed that the DBS process can overcome excessive beta-frequency (30Hz) activity plus that the degree of reduction rises with increasing DBS current in the range-of 1-3Volts then boosting stimulus-frequency within a range of 60-120Hz. The method offers scientific-research and technical support for exploring the instant effect by induced electrical stimulations in the Parkinson brain activities and it can be utilized as a research tool in the future technologies.","PeriodicalId":415114,"journal":{"name":"IP Indian Journal of Neurosciences","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Noise removal of deep brain stimulation artifacts in subthalamic nucleus neurons local field induced electrical potentials\",\"authors\":\"V. R. Raju\",\"doi\":\"10.18231/j.ijn.2022.027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study presents a noise-removal technique for the microelectrode signals of subthalamic-nuclei (STN) neurons acquired by MER machine through electrical stimulations with subthalamic-nuclei deep brain stimulation/or stimulator (STN-DBS) in local field potentials (LFPs). We proposed a novel method for the removal of induced stimuli-artifacts triggered by pulse-generators differed in typical LFPs (low-frequency potentials) signals. The method is processed and tested for accuracy and computed for execution in vitro-states. Results indicated that the stimulus-artifacts are well suppressed by this method. And also it is tested in vivo-states of Parkinson’s disease (PD) subjects (patients). It is applied to process signals of LFPs gathered intra operatively from PDs to preliminarily explore quantitative dependencies-of beta-band synchronous variations within STN, DBS parameters (stimulus-intensity, stimulus-voltage, frequency, and amplitude pulse-width). Findings showed that the DBS process can overcome excessive beta-frequency (30Hz) activity plus that the degree of reduction rises with increasing DBS current in the range-of 1-3Volts then boosting stimulus-frequency within a range of 60-120Hz. The method offers scientific-research and technical support for exploring the instant effect by induced electrical stimulations in the Parkinson brain activities and it can be utilized as a research tool in the future technologies.\",\"PeriodicalId\":415114,\"journal\":{\"name\":\"IP Indian Journal of Neurosciences\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IP Indian Journal of Neurosciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18231/j.ijn.2022.027\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IP Indian Journal of Neurosciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18231/j.ijn.2022.027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Noise removal of deep brain stimulation artifacts in subthalamic nucleus neurons local field induced electrical potentials
This study presents a noise-removal technique for the microelectrode signals of subthalamic-nuclei (STN) neurons acquired by MER machine through electrical stimulations with subthalamic-nuclei deep brain stimulation/or stimulator (STN-DBS) in local field potentials (LFPs). We proposed a novel method for the removal of induced stimuli-artifacts triggered by pulse-generators differed in typical LFPs (low-frequency potentials) signals. The method is processed and tested for accuracy and computed for execution in vitro-states. Results indicated that the stimulus-artifacts are well suppressed by this method. And also it is tested in vivo-states of Parkinson’s disease (PD) subjects (patients). It is applied to process signals of LFPs gathered intra operatively from PDs to preliminarily explore quantitative dependencies-of beta-band synchronous variations within STN, DBS parameters (stimulus-intensity, stimulus-voltage, frequency, and amplitude pulse-width). Findings showed that the DBS process can overcome excessive beta-frequency (30Hz) activity plus that the degree of reduction rises with increasing DBS current in the range-of 1-3Volts then boosting stimulus-frequency within a range of 60-120Hz. The method offers scientific-research and technical support for exploring the instant effect by induced electrical stimulations in the Parkinson brain activities and it can be utilized as a research tool in the future technologies.