多变量离群标记的鲁棒峰度投影

D. Herwindiati, Rahmat Sagara, J. Hendryli
{"title":"多变量离群标记的鲁棒峰度投影","authors":"D. Herwindiati, Rahmat Sagara, J. Hendryli","doi":"10.1109/ICACSIS.2015.7415151","DOIUrl":null,"url":null,"abstract":"Outlier labeling can be considered as an early procedure to get the information of `suspects'. This paper introducesrobust kurtosis projection algorithm for multivariate outlier labeling of data set with moderate, high and very high percentage outlier. The algorithm works in two stages. In the first stage, we propose a projection approach to findthe orthonormal set of all vectors that maximize the kurtosis of the projected standardized data. In the second stage, we estimate robust covariance matrix minimizing vector variance to label high dimensional outliers. In this stage, we use the robust estimator on the lower-dimensional data space to identify the suspected anomolous observations. The simulation experiments reveal that theintroduced algorithm has a good performance to identify an anomalous observation hidden in a moderate, high, and very high percentage of contamination data and it seems to work well in data analysis.","PeriodicalId":325539,"journal":{"name":"2015 International Conference on Advanced Computer Science and Information Systems (ICACSIS)","volume":"89 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Robust kurtosis projection for multivariate outlier labeling\",\"authors\":\"D. Herwindiati, Rahmat Sagara, J. Hendryli\",\"doi\":\"10.1109/ICACSIS.2015.7415151\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Outlier labeling can be considered as an early procedure to get the information of `suspects'. This paper introducesrobust kurtosis projection algorithm for multivariate outlier labeling of data set with moderate, high and very high percentage outlier. The algorithm works in two stages. In the first stage, we propose a projection approach to findthe orthonormal set of all vectors that maximize the kurtosis of the projected standardized data. In the second stage, we estimate robust covariance matrix minimizing vector variance to label high dimensional outliers. In this stage, we use the robust estimator on the lower-dimensional data space to identify the suspected anomolous observations. The simulation experiments reveal that theintroduced algorithm has a good performance to identify an anomalous observation hidden in a moderate, high, and very high percentage of contamination data and it seems to work well in data analysis.\",\"PeriodicalId\":325539,\"journal\":{\"name\":\"2015 International Conference on Advanced Computer Science and Information Systems (ICACSIS)\",\"volume\":\"89 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Conference on Advanced Computer Science and Information Systems (ICACSIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICACSIS.2015.7415151\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Advanced Computer Science and Information Systems (ICACSIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICACSIS.2015.7415151","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

异常值标记可以看作是获取“嫌疑人”信息的早期程序。本文介绍了一种鲁棒峰度投影算法,用于多变量离群值标记中、高、极高离群值数据集。该算法分为两个阶段。在第一阶段,我们提出了一种投影方法来寻找使投影标准化数据的峰度最大化的所有向量的标准正交集。在第二阶段,我们估计鲁棒协方差矩阵最小化向量方差标记高维异常值。在这一阶段,我们使用低维数据空间上的鲁棒估计器来识别可疑的异常观测值。仿真实验表明,该算法对隐藏在中、高、极高比例污染数据中的异常观测具有良好的识别性能,并能很好地用于数据分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust kurtosis projection for multivariate outlier labeling
Outlier labeling can be considered as an early procedure to get the information of `suspects'. This paper introducesrobust kurtosis projection algorithm for multivariate outlier labeling of data set with moderate, high and very high percentage outlier. The algorithm works in two stages. In the first stage, we propose a projection approach to findthe orthonormal set of all vectors that maximize the kurtosis of the projected standardized data. In the second stage, we estimate robust covariance matrix minimizing vector variance to label high dimensional outliers. In this stage, we use the robust estimator on the lower-dimensional data space to identify the suspected anomolous observations. The simulation experiments reveal that theintroduced algorithm has a good performance to identify an anomalous observation hidden in a moderate, high, and very high percentage of contamination data and it seems to work well in data analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信