一种冗余移动体的智能无人控制方法

Ying Zhang, Leiyan Tao, Minfeng Wei, Jian Cao, Siwen Xu, Xing Zhang
{"title":"一种冗余移动体的智能无人控制方法","authors":"Ying Zhang, Leiyan Tao, Minfeng Wei, Jian Cao, Siwen Xu, Xing Zhang","doi":"10.1109/ICUS48101.2019.8995957","DOIUrl":null,"url":null,"abstract":"The paper is about redunant moving agent with intelligent unmanned control. The main task is to complete the construction of redundant fault-tolerant control system of deep neural network, including the infrastructure construction of unmanned agent simulation, the initialization of agent parameters, the construction of redundant controller, and the construction of reinforcement learning decision model. The main purpose is to generate simulated floating point data to train the model, including designing the expected rate and path, kinematics simulation, and training data generation. The kinematics simulation scene construction and decision-making model training use deep learning, whose effect of the system performance is significant.","PeriodicalId":344181,"journal":{"name":"2019 IEEE International Conference on Unmanned Systems (ICUS)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"An Intelligent Unmanned Control Method for Redunant Moving Agent\",\"authors\":\"Ying Zhang, Leiyan Tao, Minfeng Wei, Jian Cao, Siwen Xu, Xing Zhang\",\"doi\":\"10.1109/ICUS48101.2019.8995957\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper is about redunant moving agent with intelligent unmanned control. The main task is to complete the construction of redundant fault-tolerant control system of deep neural network, including the infrastructure construction of unmanned agent simulation, the initialization of agent parameters, the construction of redundant controller, and the construction of reinforcement learning decision model. The main purpose is to generate simulated floating point data to train the model, including designing the expected rate and path, kinematics simulation, and training data generation. The kinematics simulation scene construction and decision-making model training use deep learning, whose effect of the system performance is significant.\",\"PeriodicalId\":344181,\"journal\":{\"name\":\"2019 IEEE International Conference on Unmanned Systems (ICUS)\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Conference on Unmanned Systems (ICUS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICUS48101.2019.8995957\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Unmanned Systems (ICUS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICUS48101.2019.8995957","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文研究了具有智能无人控制的冗余移动体。主要任务是完成深度神经网络冗余容错控制系统的构建,包括无人智能体仿真基础设施的构建、智能体参数的初始化、冗余控制器的构建以及强化学习决策模型的构建。主要目的是生成模拟的浮点数据来训练模型,包括设计期望速率和路径、运动学仿真和训练数据生成。运动学仿真场景构建和决策模型训练均采用深度学习,深度学习对系统性能影响显著。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Intelligent Unmanned Control Method for Redunant Moving Agent
The paper is about redunant moving agent with intelligent unmanned control. The main task is to complete the construction of redundant fault-tolerant control system of deep neural network, including the infrastructure construction of unmanned agent simulation, the initialization of agent parameters, the construction of redundant controller, and the construction of reinforcement learning decision model. The main purpose is to generate simulated floating point data to train the model, including designing the expected rate and path, kinematics simulation, and training data generation. The kinematics simulation scene construction and decision-making model training use deep learning, whose effect of the system performance is significant.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信