厚度剪切振动陀螺仪中langasite与石英的分析与比较

Y. Yong, Yoonkee Kim
{"title":"厚度剪切振动陀螺仪中langasite与石英的分析与比较","authors":"Y. Yong, Yoonkee Kim","doi":"10.1109/FREQ.2010.5556314","DOIUrl":null,"url":null,"abstract":"In our previous work an AT-cut quartz plate with lateral tines was proposed as an angular velocity sensor. The plate itself formed the driving component while the lateral tines formed the angular velocity sensors. The separation of the driving component from the sensing component allowed for a wider variety of tine geometries and modes for detecting angular velocity. In this work we analyze and compare the use of langasite versus quartz for the gyroscope. Since the langasite has a higher (2.17 times) mass density, and a higher (2.26 times) electromechanical coupling constant than those of quartz, the lateral tines were found to be more sensitive to a given angular acceleration. Our analysis showed that the material langasite was better suited for the thickness shear mode angular velocity sensor. Another important advantage for using langasite would be when the gyroscope was needed to operate at a high temperature environment unsuitable for quartz. Strong gyroscopic responses are also a function of the tine geometry. A careful selection of the tine geometry will yield stronger responses to angular velocities. Responses to angular velocities about the three axes (X-, Y-, and Z-axes) could be obtained by using different tine geometries. Hence it is possible for the thickness shear vibratory gyroscope to sense angular velocities about the three axes using multiple tines of various geometries.","PeriodicalId":344989,"journal":{"name":"2010 IEEE International Frequency Control Symposium","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Analysis and comparison of langasite versus quartz for a thickness shear vibratory gyroscope\",\"authors\":\"Y. Yong, Yoonkee Kim\",\"doi\":\"10.1109/FREQ.2010.5556314\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In our previous work an AT-cut quartz plate with lateral tines was proposed as an angular velocity sensor. The plate itself formed the driving component while the lateral tines formed the angular velocity sensors. The separation of the driving component from the sensing component allowed for a wider variety of tine geometries and modes for detecting angular velocity. In this work we analyze and compare the use of langasite versus quartz for the gyroscope. Since the langasite has a higher (2.17 times) mass density, and a higher (2.26 times) electromechanical coupling constant than those of quartz, the lateral tines were found to be more sensitive to a given angular acceleration. Our analysis showed that the material langasite was better suited for the thickness shear mode angular velocity sensor. Another important advantage for using langasite would be when the gyroscope was needed to operate at a high temperature environment unsuitable for quartz. Strong gyroscopic responses are also a function of the tine geometry. A careful selection of the tine geometry will yield stronger responses to angular velocities. Responses to angular velocities about the three axes (X-, Y-, and Z-axes) could be obtained by using different tine geometries. Hence it is possible for the thickness shear vibratory gyroscope to sense angular velocities about the three axes using multiple tines of various geometries.\",\"PeriodicalId\":344989,\"journal\":{\"name\":\"2010 IEEE International Frequency Control Symposium\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Frequency Control Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FREQ.2010.5556314\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Frequency Control Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FREQ.2010.5556314","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在我们之前的工作中,我们提出了一种具有横向时间的at切割石英板作为角速度传感器。板本身形成驱动元件,而横向时间形成角速度传感器。驱动组件与传感组件的分离允许用于检测角速度的更广泛的时间几何形状和模式。在这项工作中,我们分析和比较了菱叶石和石英在陀螺仪中的应用。由于langasite比石英具有更高的质量密度(2.17倍)和更高的机电耦合常数(2.26倍),因此发现横向时间对给定的角加速度更敏感。分析表明,langasite材料更适合于厚度剪切型角速度传感器。使用langasite的另一个重要优势是,当陀螺仪需要在不适合石英的高温环境下工作时。强陀螺仪响应也是时间几何的函数。仔细选择时间几何将产生更强的角速度响应。在三个轴(X、Y和z轴)上对角速度的响应可以通过使用不同的时间几何来获得。因此,厚度剪切振动陀螺仪可以使用不同几何形状的多个倍数来感知关于三个轴的角速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis and comparison of langasite versus quartz for a thickness shear vibratory gyroscope
In our previous work an AT-cut quartz plate with lateral tines was proposed as an angular velocity sensor. The plate itself formed the driving component while the lateral tines formed the angular velocity sensors. The separation of the driving component from the sensing component allowed for a wider variety of tine geometries and modes for detecting angular velocity. In this work we analyze and compare the use of langasite versus quartz for the gyroscope. Since the langasite has a higher (2.17 times) mass density, and a higher (2.26 times) electromechanical coupling constant than those of quartz, the lateral tines were found to be more sensitive to a given angular acceleration. Our analysis showed that the material langasite was better suited for the thickness shear mode angular velocity sensor. Another important advantage for using langasite would be when the gyroscope was needed to operate at a high temperature environment unsuitable for quartz. Strong gyroscopic responses are also a function of the tine geometry. A careful selection of the tine geometry will yield stronger responses to angular velocities. Responses to angular velocities about the three axes (X-, Y-, and Z-axes) could be obtained by using different tine geometries. Hence it is possible for the thickness shear vibratory gyroscope to sense angular velocities about the three axes using multiple tines of various geometries.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信