基于自适应em型算法的小波包域过完全混合矩阵估计拉普拉斯混合建模

M. Tinati, B. Mozaffary
{"title":"基于自适应em型算法的小波包域过完全混合矩阵估计拉普拉斯混合建模","authors":"M. Tinati, B. Mozaffary","doi":"10.1109/ICCIS.2006.252352","DOIUrl":null,"url":null,"abstract":"Speech process has benefited a great deal from the wavelet transforms. Wavelet packets decompose signals in to broader components using linear spectral bisecting. In this paper, mixtures of speech signals are decomposed using wavelet packets, the phase difference between the two mixtures are investigated in wavelet domain. In our method Laplacian mixture model (LMM) is defined. An expectation maximization (EM) algorithm is used for training of the model and calculation of model parameters which is the mixture matrix. Therefore individual speech components of speech mixtures are separated","PeriodicalId":296028,"journal":{"name":"2006 IEEE Conference on Cybernetics and Intelligent Systems","volume":"158 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Laplacian Mixture Modeling for Overcomplete Mixture Matrix Estimation in Wavelet Packet Domain by Adaptive EM-type Algorithm\",\"authors\":\"M. Tinati, B. Mozaffary\",\"doi\":\"10.1109/ICCIS.2006.252352\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Speech process has benefited a great deal from the wavelet transforms. Wavelet packets decompose signals in to broader components using linear spectral bisecting. In this paper, mixtures of speech signals are decomposed using wavelet packets, the phase difference between the two mixtures are investigated in wavelet domain. In our method Laplacian mixture model (LMM) is defined. An expectation maximization (EM) algorithm is used for training of the model and calculation of model parameters which is the mixture matrix. Therefore individual speech components of speech mixtures are separated\",\"PeriodicalId\":296028,\"journal\":{\"name\":\"2006 IEEE Conference on Cybernetics and Intelligent Systems\",\"volume\":\"158 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 IEEE Conference on Cybernetics and Intelligent Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCIS.2006.252352\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE Conference on Cybernetics and Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCIS.2006.252352","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

语音处理从小波变换中获益良多。小波包使用线性谱平分法将信号分解为更宽的分量。本文利用小波包对混合语音信号进行分解,并在小波域研究混合语音信号的相位差。该方法定义了拉普拉斯混合模型(LMM)。采用期望最大化算法对模型进行训练,并计算模型参数,即混合矩阵。因此,混合语音的各个语音成分被分离
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Laplacian Mixture Modeling for Overcomplete Mixture Matrix Estimation in Wavelet Packet Domain by Adaptive EM-type Algorithm
Speech process has benefited a great deal from the wavelet transforms. Wavelet packets decompose signals in to broader components using linear spectral bisecting. In this paper, mixtures of speech signals are decomposed using wavelet packets, the phase difference between the two mixtures are investigated in wavelet domain. In our method Laplacian mixture model (LMM) is defined. An expectation maximization (EM) algorithm is used for training of the model and calculation of model parameters which is the mixture matrix. Therefore individual speech components of speech mixtures are separated
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信