无人机多目标跟踪的分散控制

Shankarachary Ragi, E. Chong
{"title":"无人机多目标跟踪的分散控制","authors":"Shankarachary Ragi, E. Chong","doi":"10.1109/ICUAS.2013.6564698","DOIUrl":null,"url":null,"abstract":"We design a guidance control method for a fleet of autonomous unmanned aerial vehicles (UAVs) tracking multiple targets in a decentralized setting. Our method is based on the theory of decentralized partially observable Markov decision process (Dec-POMDP). Like partially observable Markov decision processes (POMDPs), it is intractable to solve Dec-POMDPs exactly. So, we extend a POMDP approximation method called nominal belief-state optimization (NBO) to solve Dec-POMDP. We incorporate the cost of communication into the objective function of Dec-POMDP, i.e., we explicitly optimize the communication among the UAVs along with the kinematic-control commands for the UAVs. We measure the performance of our guidance method with the following metrics: 1) average target-location error, and 2) average communication cost. The goal to maximize the performance with respect to each of the above metrics conflict with each other, and we show through empirical study how to trade off between these performance metrics using a scalar parameter.","PeriodicalId":322089,"journal":{"name":"2013 International Conference on Unmanned Aircraft Systems (ICUAS)","volume":"310 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Decentralized control of unmanned aerial vehicles for multitarget tracking\",\"authors\":\"Shankarachary Ragi, E. Chong\",\"doi\":\"10.1109/ICUAS.2013.6564698\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We design a guidance control method for a fleet of autonomous unmanned aerial vehicles (UAVs) tracking multiple targets in a decentralized setting. Our method is based on the theory of decentralized partially observable Markov decision process (Dec-POMDP). Like partially observable Markov decision processes (POMDPs), it is intractable to solve Dec-POMDPs exactly. So, we extend a POMDP approximation method called nominal belief-state optimization (NBO) to solve Dec-POMDP. We incorporate the cost of communication into the objective function of Dec-POMDP, i.e., we explicitly optimize the communication among the UAVs along with the kinematic-control commands for the UAVs. We measure the performance of our guidance method with the following metrics: 1) average target-location error, and 2) average communication cost. The goal to maximize the performance with respect to each of the above metrics conflict with each other, and we show through empirical study how to trade off between these performance metrics using a scalar parameter.\",\"PeriodicalId\":322089,\"journal\":{\"name\":\"2013 International Conference on Unmanned Aircraft Systems (ICUAS)\",\"volume\":\"310 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 International Conference on Unmanned Aircraft Systems (ICUAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICUAS.2013.6564698\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Unmanned Aircraft Systems (ICUAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICUAS.2013.6564698","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

针对分散环境下多目标跟踪的自主无人机编队,设计了一种制导控制方法。该方法基于分散部分可观察马尔可夫决策过程(deco - pomdp)理论。与部分可观察马尔可夫决策过程(pomdp)一样,精确求解deco - pomdp也是一个棘手的问题。因此,我们扩展了一种称为名义信念状态优化(NBO)的POMDP近似方法来求解Dec-POMDP。我们将通信成本纳入Dec-POMDP的目标函数中,即明确优化无人机之间的通信以及无人机的运动学控制命令。我们用以下指标来衡量我们的制导方法的性能:1)平均目标定位误差,2)平均通信成本。最大化上述每个指标的性能的目标是相互冲突的,我们通过实证研究展示了如何使用标量参数在这些性能指标之间进行权衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Decentralized control of unmanned aerial vehicles for multitarget tracking
We design a guidance control method for a fleet of autonomous unmanned aerial vehicles (UAVs) tracking multiple targets in a decentralized setting. Our method is based on the theory of decentralized partially observable Markov decision process (Dec-POMDP). Like partially observable Markov decision processes (POMDPs), it is intractable to solve Dec-POMDPs exactly. So, we extend a POMDP approximation method called nominal belief-state optimization (NBO) to solve Dec-POMDP. We incorporate the cost of communication into the objective function of Dec-POMDP, i.e., we explicitly optimize the communication among the UAVs along with the kinematic-control commands for the UAVs. We measure the performance of our guidance method with the following metrics: 1) average target-location error, and 2) average communication cost. The goal to maximize the performance with respect to each of the above metrics conflict with each other, and we show through empirical study how to trade off between these performance metrics using a scalar parameter.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信