{"title":"描述介观电压门控离子通道的随机非线性方程","authors":"Mauricio Tejo","doi":"10.1155/2015/658342","DOIUrl":null,"url":null,"abstract":"We propose a stochastic nonlinear system to model the gating activity coupled with the membrane potential for a typical neuron. It distinguishes two different levels: a macroscopic one, for the membrane potential, and a mesoscopic one, for the gating process through the movement of its voltage sensors. Such a nonlinear system can be handled to form a Hodgkin-Huxley-like model, which links those two levels unlike the original deterministic Hodgkin-Huxley model which is positioned at a macroscopic scale only. Also, we show that an interacting particle system can be used to approximate our model, which is an approximation technique similar to the jump Markov processes, used to approximate the original Hodgkin-Huxley model.","PeriodicalId":196477,"journal":{"name":"International Journal of Stochastic Analysis","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stochastic Nonlinear Equations Describing the Mesoscopic Voltage-Gated Ion Channels\",\"authors\":\"Mauricio Tejo\",\"doi\":\"10.1155/2015/658342\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a stochastic nonlinear system to model the gating activity coupled with the membrane potential for a typical neuron. It distinguishes two different levels: a macroscopic one, for the membrane potential, and a mesoscopic one, for the gating process through the movement of its voltage sensors. Such a nonlinear system can be handled to form a Hodgkin-Huxley-like model, which links those two levels unlike the original deterministic Hodgkin-Huxley model which is positioned at a macroscopic scale only. Also, we show that an interacting particle system can be used to approximate our model, which is an approximation technique similar to the jump Markov processes, used to approximate the original Hodgkin-Huxley model.\",\"PeriodicalId\":196477,\"journal\":{\"name\":\"International Journal of Stochastic Analysis\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Stochastic Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2015/658342\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Stochastic Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2015/658342","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Stochastic Nonlinear Equations Describing the Mesoscopic Voltage-Gated Ion Channels
We propose a stochastic nonlinear system to model the gating activity coupled with the membrane potential for a typical neuron. It distinguishes two different levels: a macroscopic one, for the membrane potential, and a mesoscopic one, for the gating process through the movement of its voltage sensors. Such a nonlinear system can be handled to form a Hodgkin-Huxley-like model, which links those two levels unlike the original deterministic Hodgkin-Huxley model which is positioned at a macroscopic scale only. Also, we show that an interacting particle system can be used to approximate our model, which is an approximation technique similar to the jump Markov processes, used to approximate the original Hodgkin-Huxley model.