Gianluca Tabella, D. Ciuonzo, N. Paltrinieri, P. Rossi
{"title":"工业厂房内快速故障检测的时空决策融合:石油和天然气场景","authors":"Gianluca Tabella, D. Ciuonzo, N. Paltrinieri, P. Rossi","doi":"10.23919/fusion49465.2021.9626941","DOIUrl":null,"url":null,"abstract":"In this work, we present a spatio-temporal decision fusion approach aimed at performing quickest detection of faults within an Oil and Gas subsea production system. Specifically, a sensor network collectively monitors the state of different pieces of equipment and reports the collected decisions to a fusion center. Therein, a spatial aggregation is performed and a global decision is taken. Such decisions are then aggregated in time by a post-processing center, which performs quickest detection of system fault according to a Bayesian criterion which exploits change-time statistical distributions originated by system components’ datasheets. The performance of our approach is analyzed in terms of both detection- and reliability-focused metrics, with a focus on (fast & inspection-cost-limited) leak detection in a real-world oil platform located in the Barents Sea.","PeriodicalId":226850,"journal":{"name":"2021 IEEE 24th International Conference on Information Fusion (FUSION)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Spatio-Temporal Decision Fusion for Quickest Fault Detection Within Industrial Plants: The Oil and Gas Scenario\",\"authors\":\"Gianluca Tabella, D. Ciuonzo, N. Paltrinieri, P. Rossi\",\"doi\":\"10.23919/fusion49465.2021.9626941\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we present a spatio-temporal decision fusion approach aimed at performing quickest detection of faults within an Oil and Gas subsea production system. Specifically, a sensor network collectively monitors the state of different pieces of equipment and reports the collected decisions to a fusion center. Therein, a spatial aggregation is performed and a global decision is taken. Such decisions are then aggregated in time by a post-processing center, which performs quickest detection of system fault according to a Bayesian criterion which exploits change-time statistical distributions originated by system components’ datasheets. The performance of our approach is analyzed in terms of both detection- and reliability-focused metrics, with a focus on (fast & inspection-cost-limited) leak detection in a real-world oil platform located in the Barents Sea.\",\"PeriodicalId\":226850,\"journal\":{\"name\":\"2021 IEEE 24th International Conference on Information Fusion (FUSION)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 24th International Conference on Information Fusion (FUSION)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/fusion49465.2021.9626941\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 24th International Conference on Information Fusion (FUSION)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/fusion49465.2021.9626941","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Spatio-Temporal Decision Fusion for Quickest Fault Detection Within Industrial Plants: The Oil and Gas Scenario
In this work, we present a spatio-temporal decision fusion approach aimed at performing quickest detection of faults within an Oil and Gas subsea production system. Specifically, a sensor network collectively monitors the state of different pieces of equipment and reports the collected decisions to a fusion center. Therein, a spatial aggregation is performed and a global decision is taken. Such decisions are then aggregated in time by a post-processing center, which performs quickest detection of system fault according to a Bayesian criterion which exploits change-time statistical distributions originated by system components’ datasheets. The performance of our approach is analyzed in terms of both detection- and reliability-focused metrics, with a focus on (fast & inspection-cost-limited) leak detection in a real-world oil platform located in the Barents Sea.