InGaAs/GaAsSb超晶格短波红外探测器

Chuan Jin, Qingqing Xu, Chengzhang Yu, Jianxin Chen
{"title":"InGaAs/GaAsSb超晶格短波红外探测器","authors":"Chuan Jin, Qingqing Xu, Chengzhang Yu, Jianxin Chen","doi":"10.1117/12.2229020","DOIUrl":null,"url":null,"abstract":"In this paper, our recent study on InGaAs/GaAsSb Type II photodetector for extended short wavelength infrared detection is reported. The high quality InGaAs/GaAsSb superlattices (SLs) was grown successfully by molecular beam epitaxy. The full width of half maximum of the SLs peak is 39”. Its optical properties were characterized by photoluminescence (PL) at different temperature. The dependences of peak energy on temperature were measured and analyzed. The photodetector with InGaAs/GaAsSb absorption regions has a Quantum Efficiency (QE) product of 12.51% at 2.1um and the 100% cutoff wavelength is at 2.5um, at 300K under zero bias. The dominant mechanism of the dark current is discussed.","PeriodicalId":222501,"journal":{"name":"SPIE Defense + Security","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Short-wavelength infrared photodetector with InGaAs/GaAsSb superlattice\",\"authors\":\"Chuan Jin, Qingqing Xu, Chengzhang Yu, Jianxin Chen\",\"doi\":\"10.1117/12.2229020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, our recent study on InGaAs/GaAsSb Type II photodetector for extended short wavelength infrared detection is reported. The high quality InGaAs/GaAsSb superlattices (SLs) was grown successfully by molecular beam epitaxy. The full width of half maximum of the SLs peak is 39”. Its optical properties were characterized by photoluminescence (PL) at different temperature. The dependences of peak energy on temperature were measured and analyzed. The photodetector with InGaAs/GaAsSb absorption regions has a Quantum Efficiency (QE) product of 12.51% at 2.1um and the 100% cutoff wavelength is at 2.5um, at 300K under zero bias. The dominant mechanism of the dark current is discussed.\",\"PeriodicalId\":222501,\"journal\":{\"name\":\"SPIE Defense + Security\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SPIE Defense + Security\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2229020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SPIE Defense + Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2229020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文报道了我们最近研究的用于扩展短波红外探测的InGaAs/GaAsSb II型光电探测器。采用分子束外延法制备了高质量的InGaAs/GaAsSb超晶格。SLs峰的半峰全宽为39”。用不同温度下的光致发光(PL)表征了其光学性质。测量并分析了峰值能量随温度的变化规律。具有InGaAs/GaAsSb吸收区的光电探测器在2.1um处的量子效率(QE)乘积为12.51%,100%截止波长为2.5um,在300K下零偏置。讨论了暗电流的主导机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Short-wavelength infrared photodetector with InGaAs/GaAsSb superlattice
In this paper, our recent study on InGaAs/GaAsSb Type II photodetector for extended short wavelength infrared detection is reported. The high quality InGaAs/GaAsSb superlattices (SLs) was grown successfully by molecular beam epitaxy. The full width of half maximum of the SLs peak is 39”. Its optical properties were characterized by photoluminescence (PL) at different temperature. The dependences of peak energy on temperature were measured and analyzed. The photodetector with InGaAs/GaAsSb absorption regions has a Quantum Efficiency (QE) product of 12.51% at 2.1um and the 100% cutoff wavelength is at 2.5um, at 300K under zero bias. The dominant mechanism of the dark current is discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信