一种新的六开关五电平升压-有源中性点箝位(5l -升压- anpc)逆变器

Y. Siwakoti
{"title":"一种新的六开关五电平升压-有源中性点箝位(5l -升压- anpc)逆变器","authors":"Y. Siwakoti","doi":"10.1109/APEC.2018.8341356","DOIUrl":null,"url":null,"abstract":"Multilevel converters have seen an increasing popularity in the last decades, due to the increased power ratings, improved power quality, low switching losses, and reduced Electromagnetic Interference (EMI). Among them, the most popular ones are the Neutral Point Clamped (NPC) and the Flying Capacitor (FC) inverter topologies. Different derivatives of the NPC and FC are prevalent in the literature for various applications. However, the main drawback of the NPC and FC topologies is the high dc-link voltage, which has to be more than twice of the grid peak voltage for grid integration. Therefore, a front-end boost dc-dc converter is normally required before the inverter, which decreases the overall efficiency of the system. Single-stage dc-ac power converters with boost capabilities offer an interesting alternative compared to the two-stage approach. Considering this aspect, a novel 5-Level three-phase boost type inverter is introduced in this paper for general-purpose applications (e.g. rolling mills, fans, pumps, marine appliances, mining, tractions, and most prominently grid-connected renewable energy, etc.) which reduces the dc-link voltage requirement to half of the conventional 5-Level NPC, ANPC and 5-Level FC family. Whilst reducing the dc-link voltage requirement, the number of active and passive components are also reduced. The principle of operation and theoretical analysis supported by key simulation and experimental waveforms of a 1.5 kW prototype are presented to prove the concept of the proposed 5L-Boost-ANPC inverter.","PeriodicalId":113756,"journal":{"name":"2018 IEEE Applied Power Electronics Conference and Exposition (APEC)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"38","resultStr":"{\"title\":\"A new six-switch five-level boost-active neutral point clamped (5L-Boost-ANPC) inverter\",\"authors\":\"Y. Siwakoti\",\"doi\":\"10.1109/APEC.2018.8341356\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multilevel converters have seen an increasing popularity in the last decades, due to the increased power ratings, improved power quality, low switching losses, and reduced Electromagnetic Interference (EMI). Among them, the most popular ones are the Neutral Point Clamped (NPC) and the Flying Capacitor (FC) inverter topologies. Different derivatives of the NPC and FC are prevalent in the literature for various applications. However, the main drawback of the NPC and FC topologies is the high dc-link voltage, which has to be more than twice of the grid peak voltage for grid integration. Therefore, a front-end boost dc-dc converter is normally required before the inverter, which decreases the overall efficiency of the system. Single-stage dc-ac power converters with boost capabilities offer an interesting alternative compared to the two-stage approach. Considering this aspect, a novel 5-Level three-phase boost type inverter is introduced in this paper for general-purpose applications (e.g. rolling mills, fans, pumps, marine appliances, mining, tractions, and most prominently grid-connected renewable energy, etc.) which reduces the dc-link voltage requirement to half of the conventional 5-Level NPC, ANPC and 5-Level FC family. Whilst reducing the dc-link voltage requirement, the number of active and passive components are also reduced. The principle of operation and theoretical analysis supported by key simulation and experimental waveforms of a 1.5 kW prototype are presented to prove the concept of the proposed 5L-Boost-ANPC inverter.\",\"PeriodicalId\":113756,\"journal\":{\"name\":\"2018 IEEE Applied Power Electronics Conference and Exposition (APEC)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"38\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE Applied Power Electronics Conference and Exposition (APEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APEC.2018.8341356\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Applied Power Electronics Conference and Exposition (APEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APEC.2018.8341356","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 38

摘要

在过去的几十年里,由于增加了额定功率,改善了功率质量,降低了开关损耗,减少了电磁干扰(EMI),多电平转换器越来越受欢迎。其中,最流行的是中性点箝位(NPC)和飞电容(FC)逆变器拓扑。NPC和FC的不同衍生物在文献中广泛应用于各种应用。然而,NPC和FC拓扑的主要缺点是高直流链路电压,它必须超过电网峰值电压的两倍才能进行电网整合。因此,在逆变器之前通常需要一个前端升压dc-dc变换器,这降低了系统的整体效率。与两级方法相比,具有升压能力的单级直流-交流电源转换器提供了一种有趣的替代方案。考虑到这方面,本文介绍了一种新型的5级三相升压型逆变器,用于通用应用(例如轧机,风扇,泵,船舶设备,采矿,牵引以及最突出的并网可再生能源等),将直流链路电压要求降低到传统5级NPC, ANPC和5级FC家族的一半。在降低直流电压要求的同时,有源和无源元件的数量也减少了。以1.5 kW样机的关键仿真和实验波形为支撑,给出了5L-Boost-ANPC逆变器的工作原理和理论分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A new six-switch five-level boost-active neutral point clamped (5L-Boost-ANPC) inverter
Multilevel converters have seen an increasing popularity in the last decades, due to the increased power ratings, improved power quality, low switching losses, and reduced Electromagnetic Interference (EMI). Among them, the most popular ones are the Neutral Point Clamped (NPC) and the Flying Capacitor (FC) inverter topologies. Different derivatives of the NPC and FC are prevalent in the literature for various applications. However, the main drawback of the NPC and FC topologies is the high dc-link voltage, which has to be more than twice of the grid peak voltage for grid integration. Therefore, a front-end boost dc-dc converter is normally required before the inverter, which decreases the overall efficiency of the system. Single-stage dc-ac power converters with boost capabilities offer an interesting alternative compared to the two-stage approach. Considering this aspect, a novel 5-Level three-phase boost type inverter is introduced in this paper for general-purpose applications (e.g. rolling mills, fans, pumps, marine appliances, mining, tractions, and most prominently grid-connected renewable energy, etc.) which reduces the dc-link voltage requirement to half of the conventional 5-Level NPC, ANPC and 5-Level FC family. Whilst reducing the dc-link voltage requirement, the number of active and passive components are also reduced. The principle of operation and theoretical analysis supported by key simulation and experimental waveforms of a 1.5 kW prototype are presented to prove the concept of the proposed 5L-Boost-ANPC inverter.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信