生成对抗网络对烟雾检测图像翻译的影响

Atharva Bankar, Rishabh Shinde, S. Bhingarkar
{"title":"生成对抗网络对烟雾检测图像翻译的影响","authors":"Atharva Bankar, Rishabh Shinde, S. Bhingarkar","doi":"10.1109/ComPE53109.2021.9751797","DOIUrl":null,"url":null,"abstract":"Computer vision is a top-tier domain of the technological world that is responsible for automating the visual systems from healthcare to self-driving vehicles. With a reputation for surpassing human intelligence, it can be implemented in various trigger systems like wildfire smoke detection where the emission of smoke as a result of wildfire is fairly unpredictable.Low contrast and brightness have a detrimental effect on computer vision tasks. We present a novel approach to detect forest wildfire smoke, using image translation for converting nighttime images to day time which eliminates the confusion between smoke, cloud, and fog. This translation aids the YOLOv5 object detection algorithm to detect the smoke with the same aptness irrespective of time and lighting conditions. This paper demonstrates that the object detection model performs better on the images translated to day time with a better confidence score as compared to the corresponding nighttime images.","PeriodicalId":211704,"journal":{"name":"2021 International Conference on Computational Performance Evaluation (ComPE)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of Image Translation using Generative Adversarial Networks for Smoke Detection\",\"authors\":\"Atharva Bankar, Rishabh Shinde, S. Bhingarkar\",\"doi\":\"10.1109/ComPE53109.2021.9751797\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Computer vision is a top-tier domain of the technological world that is responsible for automating the visual systems from healthcare to self-driving vehicles. With a reputation for surpassing human intelligence, it can be implemented in various trigger systems like wildfire smoke detection where the emission of smoke as a result of wildfire is fairly unpredictable.Low contrast and brightness have a detrimental effect on computer vision tasks. We present a novel approach to detect forest wildfire smoke, using image translation for converting nighttime images to day time which eliminates the confusion between smoke, cloud, and fog. This translation aids the YOLOv5 object detection algorithm to detect the smoke with the same aptness irrespective of time and lighting conditions. This paper demonstrates that the object detection model performs better on the images translated to day time with a better confidence score as compared to the corresponding nighttime images.\",\"PeriodicalId\":211704,\"journal\":{\"name\":\"2021 International Conference on Computational Performance Evaluation (ComPE)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Conference on Computational Performance Evaluation (ComPE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ComPE53109.2021.9751797\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Computational Performance Evaluation (ComPE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ComPE53109.2021.9751797","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

计算机视觉是技术领域的顶级领域,负责从医疗保健到自动驾驶汽车的视觉系统自动化。凭借超越人类智能的声誉,它可以在各种触发系统中实施,例如野火烟雾探测,其中由于野火而产生的烟雾是相当不可预测的。低对比度和亮度对计算机视觉任务有不利影响。我们提出了一种检测森林野火烟雾的新方法,使用图像转换将夜间图像转换为白天图像,从而消除了烟雾,云和雾之间的混淆。这种转换有助于YOLOv5物体检测算法在任何时间和光照条件下都能同样准确地检测烟雾。本文证明,与相应的夜间图像相比,目标检测模型在转换为白天的图像上表现更好,置信度得分更高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Impact of Image Translation using Generative Adversarial Networks for Smoke Detection
Computer vision is a top-tier domain of the technological world that is responsible for automating the visual systems from healthcare to self-driving vehicles. With a reputation for surpassing human intelligence, it can be implemented in various trigger systems like wildfire smoke detection where the emission of smoke as a result of wildfire is fairly unpredictable.Low contrast and brightness have a detrimental effect on computer vision tasks. We present a novel approach to detect forest wildfire smoke, using image translation for converting nighttime images to day time which eliminates the confusion between smoke, cloud, and fog. This translation aids the YOLOv5 object detection algorithm to detect the smoke with the same aptness irrespective of time and lighting conditions. This paper demonstrates that the object detection model performs better on the images translated to day time with a better confidence score as compared to the corresponding nighttime images.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信