A. N. Bogolyubov, A.L. Delitcyn, M. Malykh, A. Sveshnikov
{"title":"波导的嵌入特征值","authors":"A. N. Bogolyubov, A.L. Delitcyn, M. Malykh, A. Sveshnikov","doi":"10.1109/DIPED.2002.1049190","DOIUrl":null,"url":null,"abstract":"Waveguide trapped modes, their existence and asymptotes are studied. Simple eigenvalues (embedded in the continuous spectrum) are shown not to be stable under a small perturbation of the waveguide filling, contrary to the behavior of isolated eigenvalues.","PeriodicalId":164885,"journal":{"name":"Proceedings of the 7th International Seminar/Workshop on Direct and Inverse Problems of Electromagnetic and Acoustic Wave Theory","volume":"371 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The embedded eigenvalues of the waveguide\",\"authors\":\"A. N. Bogolyubov, A.L. Delitcyn, M. Malykh, A. Sveshnikov\",\"doi\":\"10.1109/DIPED.2002.1049190\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Waveguide trapped modes, their existence and asymptotes are studied. Simple eigenvalues (embedded in the continuous spectrum) are shown not to be stable under a small perturbation of the waveguide filling, contrary to the behavior of isolated eigenvalues.\",\"PeriodicalId\":164885,\"journal\":{\"name\":\"Proceedings of the 7th International Seminar/Workshop on Direct and Inverse Problems of Electromagnetic and Acoustic Wave Theory\",\"volume\":\"371 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 7th International Seminar/Workshop on Direct and Inverse Problems of Electromagnetic and Acoustic Wave Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DIPED.2002.1049190\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 7th International Seminar/Workshop on Direct and Inverse Problems of Electromagnetic and Acoustic Wave Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DIPED.2002.1049190","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Waveguide trapped modes, their existence and asymptotes are studied. Simple eigenvalues (embedded in the continuous spectrum) are shown not to be stable under a small perturbation of the waveguide filling, contrary to the behavior of isolated eigenvalues.