基于EM算法的BPSK调制信号在STBC信道MISO上的NDA信噪比估计

Ahmed M. Almradi, S. Dianat
{"title":"基于EM算法的BPSK调制信号在STBC信道MISO上的NDA信噪比估计","authors":"Ahmed M. Almradi, S. Dianat","doi":"10.1109/ICCITECHNOL.2012.6285840","DOIUrl":null,"url":null,"abstract":"In this paper, the problem of Non Data Aided (NDA) Signal to Noise Ratio (SNR) estimation of Binary Phase Shift keying (BPSK) modulated signals using the Expectation Maximization (EM) Algorithm is discussed. Multiple Input Single Output (MISO) channels with Space Time Block Codes (STBC) are used. The EM algorithm is a method that finds the Maximum Likelihood (ML) solution iteratively when there are unobserved (hidden or missing) data. Extension of the proposed approach to other types of modulated signals in estimating SNR is straight forward. The performance of the estimator is assessed using the NDA Cramer Rao Lower Bounds (CRLBs). Alamouti coding technique is used in this paper with two transmit antennas and one receive antenna. Our assumption is that the received signal is corrupted by additive white Gaussian noise (AWGN) with unknown variance, and scaled by fixed unknown complex channel gain. Monte Carlo simulations are used to show that the proposed estimator offers a substantial improvement over the conventional Single Input Single Output (SISO) NDA SNR estimator due to the use of the statistical dependences in space and time. Moreover, the proposed NDA SNR estimator works close to the NDA SNR estimator over Single Input Multiple Output (SIMO) channels.","PeriodicalId":435718,"journal":{"name":"2012 International Conference on Communications and Information Technology (ICCIT)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"NDA SNR estimation over MISO with STBC channels for BPSK modulated signals using the EM algorithm\",\"authors\":\"Ahmed M. Almradi, S. Dianat\",\"doi\":\"10.1109/ICCITECHNOL.2012.6285840\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the problem of Non Data Aided (NDA) Signal to Noise Ratio (SNR) estimation of Binary Phase Shift keying (BPSK) modulated signals using the Expectation Maximization (EM) Algorithm is discussed. Multiple Input Single Output (MISO) channels with Space Time Block Codes (STBC) are used. The EM algorithm is a method that finds the Maximum Likelihood (ML) solution iteratively when there are unobserved (hidden or missing) data. Extension of the proposed approach to other types of modulated signals in estimating SNR is straight forward. The performance of the estimator is assessed using the NDA Cramer Rao Lower Bounds (CRLBs). Alamouti coding technique is used in this paper with two transmit antennas and one receive antenna. Our assumption is that the received signal is corrupted by additive white Gaussian noise (AWGN) with unknown variance, and scaled by fixed unknown complex channel gain. Monte Carlo simulations are used to show that the proposed estimator offers a substantial improvement over the conventional Single Input Single Output (SISO) NDA SNR estimator due to the use of the statistical dependences in space and time. Moreover, the proposed NDA SNR estimator works close to the NDA SNR estimator over Single Input Multiple Output (SIMO) channels.\",\"PeriodicalId\":435718,\"journal\":{\"name\":\"2012 International Conference on Communications and Information Technology (ICCIT)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 International Conference on Communications and Information Technology (ICCIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCITECHNOL.2012.6285840\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 International Conference on Communications and Information Technology (ICCIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCITECHNOL.2012.6285840","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

讨论了利用期望最大化算法对二值相移键控(BPSK)调制信号进行非数据辅助(NDA)信噪比估计的问题。使用带有空时块码(STBC)的多输入单输出(MISO)信道。EM算法是一种在存在未观察到(隐藏或丢失)数据时迭代地找到最大似然(ML)解的方法。在估计信噪比时,将所提出的方法扩展到其他类型的调制信号是直接的。使用NDA Cramer - Rao下界(CRLBs)来评估估计器的性能。本文采用双发射天线和一接收天线的Alamouti编码技术。我们的假设是接收到的信号被未知方差的加性高斯白噪声(AWGN)破坏,并被固定的未知复信道增益缩放。蒙特卡罗模拟表明,由于使用了空间和时间上的统计依赖性,所提出的估计器比传统的单输入单输出(SISO) NDA信噪比估计器提供了实质性的改进。此外,所提出的NDA信噪比估计器在单输入多输出(SIMO)信道上的工作接近于NDA信噪比估计器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
NDA SNR estimation over MISO with STBC channels for BPSK modulated signals using the EM algorithm
In this paper, the problem of Non Data Aided (NDA) Signal to Noise Ratio (SNR) estimation of Binary Phase Shift keying (BPSK) modulated signals using the Expectation Maximization (EM) Algorithm is discussed. Multiple Input Single Output (MISO) channels with Space Time Block Codes (STBC) are used. The EM algorithm is a method that finds the Maximum Likelihood (ML) solution iteratively when there are unobserved (hidden or missing) data. Extension of the proposed approach to other types of modulated signals in estimating SNR is straight forward. The performance of the estimator is assessed using the NDA Cramer Rao Lower Bounds (CRLBs). Alamouti coding technique is used in this paper with two transmit antennas and one receive antenna. Our assumption is that the received signal is corrupted by additive white Gaussian noise (AWGN) with unknown variance, and scaled by fixed unknown complex channel gain. Monte Carlo simulations are used to show that the proposed estimator offers a substantial improvement over the conventional Single Input Single Output (SISO) NDA SNR estimator due to the use of the statistical dependences in space and time. Moreover, the proposed NDA SNR estimator works close to the NDA SNR estimator over Single Input Multiple Output (SIMO) channels.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信