面向长期视觉定位的全景图像数据库的高效搜索

Semih Orhan, Y. Bastanlar
{"title":"面向长期视觉定位的全景图像数据库的高效搜索","authors":"Semih Orhan, Y. Bastanlar","doi":"10.1109/ICCVW54120.2021.00198","DOIUrl":null,"url":null,"abstract":"In this work, we focus on a localization technique that is based on image retrieval. In this technique, database images are kept with GPS coordinates and the geographic location of the retrieved database image serves as an approximate position of the query image. In our scenario, database consists of panoramic images (e.g. Google Street View) and query images are collected with a standard field-of-view camera in a different time. While searching the match of a perspective query image in a panoramic image database, unlike previous studies, we do not generate a number of perspective images from the panoramic image. Instead, taking advantage of CNNs, we slide a search window in the last convolutional layer belonging to the panoramic image and compute the similarity with the descriptor extracted from the query image. In this way, more locations are visited in less amount of time. We conducted experiments with state-of-the-art descriptors and results reveal that the proposed sliding window approach reaches higher accuracy than generating 4 or 8 perspective images.","PeriodicalId":226794,"journal":{"name":"2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW)","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Efficient Search in a Panoramic Image Database for Long-term Visual Localization\",\"authors\":\"Semih Orhan, Y. Bastanlar\",\"doi\":\"10.1109/ICCVW54120.2021.00198\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we focus on a localization technique that is based on image retrieval. In this technique, database images are kept with GPS coordinates and the geographic location of the retrieved database image serves as an approximate position of the query image. In our scenario, database consists of panoramic images (e.g. Google Street View) and query images are collected with a standard field-of-view camera in a different time. While searching the match of a perspective query image in a panoramic image database, unlike previous studies, we do not generate a number of perspective images from the panoramic image. Instead, taking advantage of CNNs, we slide a search window in the last convolutional layer belonging to the panoramic image and compute the similarity with the descriptor extracted from the query image. In this way, more locations are visited in less amount of time. We conducted experiments with state-of-the-art descriptors and results reveal that the proposed sliding window approach reaches higher accuracy than generating 4 or 8 perspective images.\",\"PeriodicalId\":226794,\"journal\":{\"name\":\"2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW)\",\"volume\":\"64 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCVW54120.2021.00198\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCVW54120.2021.00198","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

在这项工作中,我们主要研究一种基于图像检索的定位技术。在该技术中,数据库图像与GPS坐标保持一致,检索到的数据库图像的地理位置作为查询图像的近似位置。在我们的场景中,数据库由全景图像(例如Google街景)和查询图像组成,这些图像是用标准视场相机在不同时间收集的。在全景图像数据库中搜索透视查询图像的匹配时,与以往的研究不同,我们没有从全景图像中生成多个透视图像。相反,利用cnn的优势,我们在属于全景图像的最后一个卷积层滑动搜索窗口,并计算与从查询图像中提取的描述符的相似度。通过这种方式,在更短的时间内访问了更多的地点。我们用最先进的描述符进行了实验,结果表明,所提出的滑动窗口方法比生成4或8个透视图像的精度更高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient Search in a Panoramic Image Database for Long-term Visual Localization
In this work, we focus on a localization technique that is based on image retrieval. In this technique, database images are kept with GPS coordinates and the geographic location of the retrieved database image serves as an approximate position of the query image. In our scenario, database consists of panoramic images (e.g. Google Street View) and query images are collected with a standard field-of-view camera in a different time. While searching the match of a perspective query image in a panoramic image database, unlike previous studies, we do not generate a number of perspective images from the panoramic image. Instead, taking advantage of CNNs, we slide a search window in the last convolutional layer belonging to the panoramic image and compute the similarity with the descriptor extracted from the query image. In this way, more locations are visited in less amount of time. We conducted experiments with state-of-the-art descriptors and results reveal that the proposed sliding window approach reaches higher accuracy than generating 4 or 8 perspective images.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信