使用递归神经网络识别作者

Shriya T. P. Gupta, J. Sahoo, R. Roul
{"title":"使用递归神经网络识别作者","authors":"Shriya T. P. Gupta, J. Sahoo, R. Roul","doi":"10.1145/3325917.3325935","DOIUrl":null,"url":null,"abstract":"Authorship identification is the process of revealing the hidden identity of authors from a corpus of literary data based on a stylometric analysis of the text. It has essential applications in various fields, such as cyber-forensics, plagiarism detection, and political socialization. This paper aims to use a deep learning approach for the task of authorship identification by defining a suitable characterization of texts to capture the distinctive style of an author. The proposed model uses an index based word embedding for the C50 and the BBC datasets, applied to the input data of article level Long Short Term Memory (LSTM) network and Gated Recurrent Unit (GRU) network models. A comparative study of this new variant of embeddings is done with the standard approach of pre-trained word embeddings.","PeriodicalId":249061,"journal":{"name":"Proceedings of the 2019 3rd International Conference on Information System and Data Mining","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Authorship Identification using Recurrent Neural Networks\",\"authors\":\"Shriya T. P. Gupta, J. Sahoo, R. Roul\",\"doi\":\"10.1145/3325917.3325935\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Authorship identification is the process of revealing the hidden identity of authors from a corpus of literary data based on a stylometric analysis of the text. It has essential applications in various fields, such as cyber-forensics, plagiarism detection, and political socialization. This paper aims to use a deep learning approach for the task of authorship identification by defining a suitable characterization of texts to capture the distinctive style of an author. The proposed model uses an index based word embedding for the C50 and the BBC datasets, applied to the input data of article level Long Short Term Memory (LSTM) network and Gated Recurrent Unit (GRU) network models. A comparative study of this new variant of embeddings is done with the standard approach of pre-trained word embeddings.\",\"PeriodicalId\":249061,\"journal\":{\"name\":\"Proceedings of the 2019 3rd International Conference on Information System and Data Mining\",\"volume\":\"63 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2019 3rd International Conference on Information System and Data Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3325917.3325935\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2019 3rd International Conference on Information System and Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3325917.3325935","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

作者身份识别是基于文本的文体分析,从文学数据语料库中揭示作者隐藏身份的过程。它在许多领域都有重要的应用,如网络取证、剽窃检测和政治社会化。本文旨在通过定义文本的适当特征来捕捉作者的独特风格,从而使用深度学习方法来识别作者身份。该模型对C50和BBC数据集使用基于索引的词嵌入,并应用于文章级长短期记忆(LSTM)网络和门控循环单元(GRU)网络模型的输入数据。并与标准的预训练词嵌入方法进行了比较研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Authorship Identification using Recurrent Neural Networks
Authorship identification is the process of revealing the hidden identity of authors from a corpus of literary data based on a stylometric analysis of the text. It has essential applications in various fields, such as cyber-forensics, plagiarism detection, and political socialization. This paper aims to use a deep learning approach for the task of authorship identification by defining a suitable characterization of texts to capture the distinctive style of an author. The proposed model uses an index based word embedding for the C50 and the BBC datasets, applied to the input data of article level Long Short Term Memory (LSTM) network and Gated Recurrent Unit (GRU) network models. A comparative study of this new variant of embeddings is done with the standard approach of pre-trained word embeddings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信