词频分析的最优哈希表

Sheng-Lan Peng
{"title":"词频分析的最优哈希表","authors":"Sheng-Lan Peng","doi":"10.1109/WISM.2010.59","DOIUrl":null,"url":null,"abstract":"Word frequency analysis plays an essential role in many data mining tasks of large-scale data set based on text corpus, and hash list is a very simple but efficient structure for frequent pattern discovering. In this paper, a Poisson approximation approach is exploited to analyze the space efficiency of hash list under different parameters on probability. Based on our theoretical model, an optimal parameter setting for hash list is given. Experimental result of real data shows that hash list with the optimal parameter can reach minimum or nearly minimum memory cost.","PeriodicalId":119569,"journal":{"name":"2010 International Conference on Web Information Systems and Mining","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal Hash List for Word Frequency Analysis\",\"authors\":\"Sheng-Lan Peng\",\"doi\":\"10.1109/WISM.2010.59\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Word frequency analysis plays an essential role in many data mining tasks of large-scale data set based on text corpus, and hash list is a very simple but efficient structure for frequent pattern discovering. In this paper, a Poisson approximation approach is exploited to analyze the space efficiency of hash list under different parameters on probability. Based on our theoretical model, an optimal parameter setting for hash list is given. Experimental result of real data shows that hash list with the optimal parameter can reach minimum or nearly minimum memory cost.\",\"PeriodicalId\":119569,\"journal\":{\"name\":\"2010 International Conference on Web Information Systems and Mining\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 International Conference on Web Information Systems and Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WISM.2010.59\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Web Information Systems and Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WISM.2010.59","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

词频分析在许多基于文本语料库的大规模数据集的数据挖掘任务中起着至关重要的作用,而哈希表是一种非常简单而有效的频繁模式发现结构。本文利用泊松近似方法分析了哈希表在不同参数下的空间效率。在理论模型的基础上,给出了哈希表的最优参数设置。实际数据的实验结果表明,采用最优参数的哈希表可以达到最小或接近最小的内存开销。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal Hash List for Word Frequency Analysis
Word frequency analysis plays an essential role in many data mining tasks of large-scale data set based on text corpus, and hash list is a very simple but efficient structure for frequent pattern discovering. In this paper, a Poisson approximation approach is exploited to analyze the space efficiency of hash list under different parameters on probability. Based on our theoretical model, an optimal parameter setting for hash list is given. Experimental result of real data shows that hash list with the optimal parameter can reach minimum or nearly minimum memory cost.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信