{"title":"一种新的LSTM神经网络变量选择算法","authors":"Lin Sui, B. Du, Mengyan Zhang, Kai Sun","doi":"10.1109/ddcls52934.2021.9455564","DOIUrl":null,"url":null,"abstract":"This paper proposes an accurate and reliable input variable selection algorithm by embedding a nonnegative garrote (NNG) algorithm into long short term memory (LSTM) neural network to perform data-driven modeling on a highly nonlinear and dynamic time-delay dataset. Firstly, an LSTM deep neural network is trained, and a well-trained LSTM network is obtained by optimizing the parameters of LSTM through a grid search algorithm. Secondly, the initial input weights of LSTM are compressed accurately by the NNG algorithm, and block cross-validation is applied to the optimization calculation process to achieve input variable selection. Finally, the performance of the algorithm is verified by the improved Friedman time-delay artificial datasets. Simulation results show that the algorithm could construct a more simplified and better predictive model than other traditional algorithms.","PeriodicalId":325897,"journal":{"name":"2021 IEEE 10th Data Driven Control and Learning Systems Conference (DDCLS)","volume":"129 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A new variable selection algorithm for LSTM neural network\",\"authors\":\"Lin Sui, B. Du, Mengyan Zhang, Kai Sun\",\"doi\":\"10.1109/ddcls52934.2021.9455564\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes an accurate and reliable input variable selection algorithm by embedding a nonnegative garrote (NNG) algorithm into long short term memory (LSTM) neural network to perform data-driven modeling on a highly nonlinear and dynamic time-delay dataset. Firstly, an LSTM deep neural network is trained, and a well-trained LSTM network is obtained by optimizing the parameters of LSTM through a grid search algorithm. Secondly, the initial input weights of LSTM are compressed accurately by the NNG algorithm, and block cross-validation is applied to the optimization calculation process to achieve input variable selection. Finally, the performance of the algorithm is verified by the improved Friedman time-delay artificial datasets. Simulation results show that the algorithm could construct a more simplified and better predictive model than other traditional algorithms.\",\"PeriodicalId\":325897,\"journal\":{\"name\":\"2021 IEEE 10th Data Driven Control and Learning Systems Conference (DDCLS)\",\"volume\":\"129 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 10th Data Driven Control and Learning Systems Conference (DDCLS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ddcls52934.2021.9455564\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 10th Data Driven Control and Learning Systems Conference (DDCLS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ddcls52934.2021.9455564","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A new variable selection algorithm for LSTM neural network
This paper proposes an accurate and reliable input variable selection algorithm by embedding a nonnegative garrote (NNG) algorithm into long short term memory (LSTM) neural network to perform data-driven modeling on a highly nonlinear and dynamic time-delay dataset. Firstly, an LSTM deep neural network is trained, and a well-trained LSTM network is obtained by optimizing the parameters of LSTM through a grid search algorithm. Secondly, the initial input weights of LSTM are compressed accurately by the NNG algorithm, and block cross-validation is applied to the optimization calculation process to achieve input variable selection. Finally, the performance of the algorithm is verified by the improved Friedman time-delay artificial datasets. Simulation results show that the algorithm could construct a more simplified and better predictive model than other traditional algorithms.