差分隐私下稀疏协方差矩阵的阈值估计

Di Wang, Jinhui Xu, Yang He
{"title":"差分隐私下稀疏协方差矩阵的阈值估计","authors":"Di Wang, Jinhui Xu, Yang He","doi":"10.1109/CISS.2019.8692905","DOIUrl":null,"url":null,"abstract":"In this paper, we study the problem of estimating the covariance matrix under differential privacy, where the underlying covariance matrix is assumed to be sparse and of high dimensions. We propose a new method, called DP-Thresholding, to achieve a non-trivial $l_{2}$-norm based error bound, which is significantly better than the existing ones from adding noise directly to the empirical covariance matrix. Experiments on the synthetic datasets show consistent results with our theoretical claims.","PeriodicalId":123696,"journal":{"name":"2019 53rd Annual Conference on Information Sciences and Systems (CISS)","volume":"150 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Estimating Sparse Covariance Matrix Under Differential Privacy via Thresholding\",\"authors\":\"Di Wang, Jinhui Xu, Yang He\",\"doi\":\"10.1109/CISS.2019.8692905\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study the problem of estimating the covariance matrix under differential privacy, where the underlying covariance matrix is assumed to be sparse and of high dimensions. We propose a new method, called DP-Thresholding, to achieve a non-trivial $l_{2}$-norm based error bound, which is significantly better than the existing ones from adding noise directly to the empirical covariance matrix. Experiments on the synthetic datasets show consistent results with our theoretical claims.\",\"PeriodicalId\":123696,\"journal\":{\"name\":\"2019 53rd Annual Conference on Information Sciences and Systems (CISS)\",\"volume\":\"150 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 53rd Annual Conference on Information Sciences and Systems (CISS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CISS.2019.8692905\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 53rd Annual Conference on Information Sciences and Systems (CISS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISS.2019.8692905","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文研究了在差分隐私条件下的协方差矩阵估计问题,其中底层协方差矩阵被假定为高维稀疏矩阵。我们提出了一种新的方法,称为dp阈值,以获得非平凡的$l_{2}$-范数为基础的误差界,该方法明显优于现有的直接在经验协方差矩阵中添加噪声的方法。在合成数据集上的实验结果与我们的理论主张一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Estimating Sparse Covariance Matrix Under Differential Privacy via Thresholding
In this paper, we study the problem of estimating the covariance matrix under differential privacy, where the underlying covariance matrix is assumed to be sparse and of high dimensions. We propose a new method, called DP-Thresholding, to achieve a non-trivial $l_{2}$-norm based error bound, which is significantly better than the existing ones from adding noise directly to the empirical covariance matrix. Experiments on the synthetic datasets show consistent results with our theoretical claims.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信