并发程序的竞争导向调度

Mahdi Eslamimehr, J. Palsberg
{"title":"并发程序的竞争导向调度","authors":"Mahdi Eslamimehr, J. Palsberg","doi":"10.1145/2555243.2555263","DOIUrl":null,"url":null,"abstract":"Detection of data races in Java programs remains a difficult problem. The best static techniques produce many false positives, and also the best dynamic techniques leave room for improvement. We present a new technique called race directed scheduling that for a given race candidate searches for an input and a schedule that lead to the race. The search iterates a combination of concolic execution and schedule improvement, and turns out to find useful inputs and schedules efficiently. We use an existing technique to produce a manageable number of race candidates. Our experiments on 23 Java programs found 72 real races that were missed by the best existing dynamic techniques. Among those 72 races, 31 races were found with schedules that have between 1 million and 108 million events, which suggests that they are rare and hard-to-find races.","PeriodicalId":286119,"journal":{"name":"ACM SIGPLAN Symposium on Principles & Practice of Parallel Programming","volume":"201 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"45","resultStr":"{\"title\":\"Race directed scheduling of concurrent programs\",\"authors\":\"Mahdi Eslamimehr, J. Palsberg\",\"doi\":\"10.1145/2555243.2555263\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Detection of data races in Java programs remains a difficult problem. The best static techniques produce many false positives, and also the best dynamic techniques leave room for improvement. We present a new technique called race directed scheduling that for a given race candidate searches for an input and a schedule that lead to the race. The search iterates a combination of concolic execution and schedule improvement, and turns out to find useful inputs and schedules efficiently. We use an existing technique to produce a manageable number of race candidates. Our experiments on 23 Java programs found 72 real races that were missed by the best existing dynamic techniques. Among those 72 races, 31 races were found with schedules that have between 1 million and 108 million events, which suggests that they are rare and hard-to-find races.\",\"PeriodicalId\":286119,\"journal\":{\"name\":\"ACM SIGPLAN Symposium on Principles & Practice of Parallel Programming\",\"volume\":\"201 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-02-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"45\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM SIGPLAN Symposium on Principles & Practice of Parallel Programming\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2555243.2555263\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM SIGPLAN Symposium on Principles & Practice of Parallel Programming","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2555243.2555263","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 45

摘要

在Java程序中检测数据竞争仍然是一个难题。最好的静态技术会产生许多误报,最好的动态技术也会留下改进的空间。我们提出了一种名为“比赛定向调度”的新技术,对于给定的比赛候选人,它搜索导致比赛的输入和调度。该搜索迭代了同步执行和进度改进的组合,并有效地找到了有用的输入和进度。我们使用现有的技术来产生可控数量的竞赛候选人。我们在23个Java程序上的实验发现了72个被现有的最佳动态技术遗漏的真实竞赛。在这72场比赛中,有31场比赛的赛程在100万∼1.08亿场之间,这表明它们是罕见的、难以找到的比赛。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Race directed scheduling of concurrent programs
Detection of data races in Java programs remains a difficult problem. The best static techniques produce many false positives, and also the best dynamic techniques leave room for improvement. We present a new technique called race directed scheduling that for a given race candidate searches for an input and a schedule that lead to the race. The search iterates a combination of concolic execution and schedule improvement, and turns out to find useful inputs and schedules efficiently. We use an existing technique to produce a manageable number of race candidates. Our experiments on 23 Java programs found 72 real races that were missed by the best existing dynamic techniques. Among those 72 races, 31 races were found with schedules that have between 1 million and 108 million events, which suggests that they are rare and hard-to-find races.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信