M. E. Burich, R. Souza, G. Brante, Oluwakayode Onireti, M. Imran
{"title":"利用跨层分析分析HARQ对吞吐量和能效的影响","authors":"M. E. Burich, R. Souza, G. Brante, Oluwakayode Onireti, M. Imran","doi":"10.1109/WD.2017.7918131","DOIUrl":null,"url":null,"abstract":"This paper studies the potential improvements in terms of energy efficiency and system throughput of a hybrid automatic retransmission request (HARQ) mechanism. The analysis includes both the physical (PHY) and medium access (MAC) layers. We investigate the trade-off provided by HARQ, which demands reduced transmit power for a given target outage probability at the cost of more accesses to the channel. Since the competition for channel access at the MAC layer is very expensive in terms of energy and delay, our results show that HARQ leads to great performance improvements due to the decrease in the number of contending nodes - a consequence of the reduced required transmit power. Counter-intuitively, our analysis leads to the conclusion that retransmissions may decrease the delay, improving the system performance. Finally, we investigate the optimum values for the number of allowed retransmissions in order to maximize either the throughput or the energy efficiency.","PeriodicalId":179998,"journal":{"name":"2017 Wireless Days","volume":"176 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"On the impact of HARQ on the throughput and energy efficiency using cross-layer analysis\",\"authors\":\"M. E. Burich, R. Souza, G. Brante, Oluwakayode Onireti, M. Imran\",\"doi\":\"10.1109/WD.2017.7918131\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper studies the potential improvements in terms of energy efficiency and system throughput of a hybrid automatic retransmission request (HARQ) mechanism. The analysis includes both the physical (PHY) and medium access (MAC) layers. We investigate the trade-off provided by HARQ, which demands reduced transmit power for a given target outage probability at the cost of more accesses to the channel. Since the competition for channel access at the MAC layer is very expensive in terms of energy and delay, our results show that HARQ leads to great performance improvements due to the decrease in the number of contending nodes - a consequence of the reduced required transmit power. Counter-intuitively, our analysis leads to the conclusion that retransmissions may decrease the delay, improving the system performance. Finally, we investigate the optimum values for the number of allowed retransmissions in order to maximize either the throughput or the energy efficiency.\",\"PeriodicalId\":179998,\"journal\":{\"name\":\"2017 Wireless Days\",\"volume\":\"176 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 Wireless Days\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WD.2017.7918131\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Wireless Days","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WD.2017.7918131","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On the impact of HARQ on the throughput and energy efficiency using cross-layer analysis
This paper studies the potential improvements in terms of energy efficiency and system throughput of a hybrid automatic retransmission request (HARQ) mechanism. The analysis includes both the physical (PHY) and medium access (MAC) layers. We investigate the trade-off provided by HARQ, which demands reduced transmit power for a given target outage probability at the cost of more accesses to the channel. Since the competition for channel access at the MAC layer is very expensive in terms of energy and delay, our results show that HARQ leads to great performance improvements due to the decrease in the number of contending nodes - a consequence of the reduced required transmit power. Counter-intuitively, our analysis leads to the conclusion that retransmissions may decrease the delay, improving the system performance. Finally, we investigate the optimum values for the number of allowed retransmissions in order to maximize either the throughput or the energy efficiency.