基于端到端深度学习模型的印尼语自动语音识别

Anis Sirwan, Kurniawan Adhie Thama, S. Suyanto
{"title":"基于端到端深度学习模型的印尼语自动语音识别","authors":"Anis Sirwan, Kurniawan Adhie Thama, S. Suyanto","doi":"10.1109/CyberneticsCom55287.2022.9865253","DOIUrl":null,"url":null,"abstract":"The Indonesian language is different from English in phonetics. It is challenging to develop AI technology, machine learning, and deep learning with various algorithms to select the appropriate methods and algorithms for Indonesian speech recognition needs. Much research on speech recognition has been performed for high-resource languages, such as English. Unfortunately, those models cannot be directly used for the Indonesian language. To create an excellent speech recognition model, we need a high-quality and quantity dataset of the Indonesian language. But, such a dataset is not available at the moment. Hence, in this research, we start collecting such a dataset. Next, the developed dataset is used to train an end-to-end deep learning-based speech recognition model. The evaluation shows that the developed model achieves a word error rate of 14.172%, better than two previous models: Mozilla DeepSpeech (23.10%) and Kaituoxu Speech-Transformer (22.00%).","PeriodicalId":178279,"journal":{"name":"2022 IEEE International Conference on Cybernetics and Computational Intelligence (CyberneticsCom)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Indonesian Automatic Speech Recognition Based on End-to-end Deep Learning Model\",\"authors\":\"Anis Sirwan, Kurniawan Adhie Thama, S. Suyanto\",\"doi\":\"10.1109/CyberneticsCom55287.2022.9865253\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Indonesian language is different from English in phonetics. It is challenging to develop AI technology, machine learning, and deep learning with various algorithms to select the appropriate methods and algorithms for Indonesian speech recognition needs. Much research on speech recognition has been performed for high-resource languages, such as English. Unfortunately, those models cannot be directly used for the Indonesian language. To create an excellent speech recognition model, we need a high-quality and quantity dataset of the Indonesian language. But, such a dataset is not available at the moment. Hence, in this research, we start collecting such a dataset. Next, the developed dataset is used to train an end-to-end deep learning-based speech recognition model. The evaluation shows that the developed model achieves a word error rate of 14.172%, better than two previous models: Mozilla DeepSpeech (23.10%) and Kaituoxu Speech-Transformer (22.00%).\",\"PeriodicalId\":178279,\"journal\":{\"name\":\"2022 IEEE International Conference on Cybernetics and Computational Intelligence (CyberneticsCom)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Cybernetics and Computational Intelligence (CyberneticsCom)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CyberneticsCom55287.2022.9865253\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Cybernetics and Computational Intelligence (CyberneticsCom)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CyberneticsCom55287.2022.9865253","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

印尼语在语音上与英语不同。开发具有各种算法的人工智能技术、机器学习和深度学习,以选择适合印度尼西亚语音识别需求的方法和算法,这是一项挑战。很多关于语音识别的研究都是针对资源丰富的语言进行的,比如英语。不幸的是,这些模型不能直接用于印尼语。为了创建一个优秀的语音识别模型,我们需要一个高质量和数量的印尼语数据集。但是,目前还没有这样的数据集。因此,在本研究中,我们开始收集这样的数据集。接下来,开发的数据集用于训练端到端基于深度学习的语音识别模型。结果表明,该模型的错误率为14.172%,优于Mozilla DeepSpeech(23.10%)和kaiituoxu Speech-Transformer(22.00%)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Indonesian Automatic Speech Recognition Based on End-to-end Deep Learning Model
The Indonesian language is different from English in phonetics. It is challenging to develop AI technology, machine learning, and deep learning with various algorithms to select the appropriate methods and algorithms for Indonesian speech recognition needs. Much research on speech recognition has been performed for high-resource languages, such as English. Unfortunately, those models cannot be directly used for the Indonesian language. To create an excellent speech recognition model, we need a high-quality and quantity dataset of the Indonesian language. But, such a dataset is not available at the moment. Hence, in this research, we start collecting such a dataset. Next, the developed dataset is used to train an end-to-end deep learning-based speech recognition model. The evaluation shows that the developed model achieves a word error rate of 14.172%, better than two previous models: Mozilla DeepSpeech (23.10%) and Kaituoxu Speech-Transformer (22.00%).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信