基于k-NN的网络游戏恶意退款检测

Yu-Chih Wei, You-Xin Lai, Hai-Po Su, Yu-Wen Yen
{"title":"基于k-NN的网络游戏恶意退款检测","authors":"Yu-Chih Wei, You-Xin Lai, Hai-Po Su, Yu-Wen Yen","doi":"10.1109/TrustCom50675.2020.00269","DOIUrl":null,"url":null,"abstract":"It has been estimated that the global gaming market is worth nearly US$150 billion. Its consumer chargeback services often end up being used by some online gamers as a tool to commit fraud, causing a huge adverse impact on the industry. A gaming company in Taiwan found itself falling victim of malicious chargeback fraud. Nearly NT$10 million of fraudulent chargebacks were made during the period from January to April 2019 alone, making a huge dent in the revenue of the company. To counter chargeback fraud, some gaming companies resorted to manually checking for and blocking malicious accounts of their users, incurring huge labor cost in the process. Manual checking might have alleviated the problems to some extent; however, when new games came online, gaming companies would see a surge of malicious chargebacks, causing subsequent exponential increases in losses. To help reduce labor cost incurred by manual account checking, potential human errors and potential losses that may be caused by malicious chargebacks, this study proposed a k-NN model to detect malicious chargebacks by analysing online gamers' transactional records and gameplay data. The numbers of times and the amounts of prepayment, the numbers of times of chargebacks, and the times of the transactions that the gamers of our study gaming company made were used as characteristics for our k-NN model. The use of these characteristics enabled us to score a minimum of 0.81 in F1-Measure. In addition, three SMOTE (Synthetic Minority Over-sampling Technique) sampling methods were used to deal with the imbalance data provided by our study company and improve the F1-Measure of our proposed k-NN model (scoring up to 0.89 in our experiments). It is hoped that the use of our k-NN model can help reduce potential losses of online gaming companies that may be caused by malicious chargeback fraud, deter to malicious gamers against illegal gains, and prevent the online gaming ecosystem from being sabotaged by malicious chargebacks.","PeriodicalId":221956,"journal":{"name":"2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom)","volume":"84 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Detecting Online Game Malicious Chargeback by using k-NN\",\"authors\":\"Yu-Chih Wei, You-Xin Lai, Hai-Po Su, Yu-Wen Yen\",\"doi\":\"10.1109/TrustCom50675.2020.00269\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It has been estimated that the global gaming market is worth nearly US$150 billion. Its consumer chargeback services often end up being used by some online gamers as a tool to commit fraud, causing a huge adverse impact on the industry. A gaming company in Taiwan found itself falling victim of malicious chargeback fraud. Nearly NT$10 million of fraudulent chargebacks were made during the period from January to April 2019 alone, making a huge dent in the revenue of the company. To counter chargeback fraud, some gaming companies resorted to manually checking for and blocking malicious accounts of their users, incurring huge labor cost in the process. Manual checking might have alleviated the problems to some extent; however, when new games came online, gaming companies would see a surge of malicious chargebacks, causing subsequent exponential increases in losses. To help reduce labor cost incurred by manual account checking, potential human errors and potential losses that may be caused by malicious chargebacks, this study proposed a k-NN model to detect malicious chargebacks by analysing online gamers' transactional records and gameplay data. The numbers of times and the amounts of prepayment, the numbers of times of chargebacks, and the times of the transactions that the gamers of our study gaming company made were used as characteristics for our k-NN model. The use of these characteristics enabled us to score a minimum of 0.81 in F1-Measure. In addition, three SMOTE (Synthetic Minority Over-sampling Technique) sampling methods were used to deal with the imbalance data provided by our study company and improve the F1-Measure of our proposed k-NN model (scoring up to 0.89 in our experiments). It is hoped that the use of our k-NN model can help reduce potential losses of online gaming companies that may be caused by malicious chargeback fraud, deter to malicious gamers against illegal gains, and prevent the online gaming ecosystem from being sabotaged by malicious chargebacks.\",\"PeriodicalId\":221956,\"journal\":{\"name\":\"2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom)\",\"volume\":\"84 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TrustCom50675.2020.00269\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TrustCom50675.2020.00269","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

据估计,全球游戏市场价值近1500亿美元。它的消费者退款服务经常被一些网络游戏玩家用作欺诈工具,对游戏行业造成巨大的负面影响。台湾一家游戏公司发现自己成为了恶意退款欺诈的受害者。仅在2019年1月至4月期间,就发生了近1000万新台币的欺诈性退款,使该公司的收入大幅下降。为了应对退款欺诈,一些游戏公司不得不手动检查并阻止用户的恶意账户,这一过程耗费了大量人力成本。人工检查可能会在一定程度上缓解问题;然而,当新游戏上线时,游戏公司会看到恶意退款激增,导致随后的损失呈指数级增长。为了帮助减少人工核对账户所产生的人工成本、潜在的人为错误和可能由恶意退款造成的潜在损失,本研究提出了一个k-NN模型,通过分析在线玩家的交易记录和游戏玩法数据来检测恶意退款。我们研究的游戏公司的玩家所做的预付次数和金额、退款次数和交易次数被用作我们的k-NN模型的特征。这些特征的使用使我们在F1-Measure中得分最低为0.81。此外,我们使用了三种SMOTE (Synthetic Minority oversampling Technique)采样方法来处理我们研究公司提供的不平衡数据,并改进了我们提出的k-NN模型的F1-Measure(在我们的实验中得分高达0.89)。希望利用我们的k-NN模型可以帮助减少网络游戏公司可能因恶意退款欺诈而造成的潜在损失,威慑恶意玩家的非法收益,防止网络游戏生态系统被恶意退款破坏。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Detecting Online Game Malicious Chargeback by using k-NN
It has been estimated that the global gaming market is worth nearly US$150 billion. Its consumer chargeback services often end up being used by some online gamers as a tool to commit fraud, causing a huge adverse impact on the industry. A gaming company in Taiwan found itself falling victim of malicious chargeback fraud. Nearly NT$10 million of fraudulent chargebacks were made during the period from January to April 2019 alone, making a huge dent in the revenue of the company. To counter chargeback fraud, some gaming companies resorted to manually checking for and blocking malicious accounts of their users, incurring huge labor cost in the process. Manual checking might have alleviated the problems to some extent; however, when new games came online, gaming companies would see a surge of malicious chargebacks, causing subsequent exponential increases in losses. To help reduce labor cost incurred by manual account checking, potential human errors and potential losses that may be caused by malicious chargebacks, this study proposed a k-NN model to detect malicious chargebacks by analysing online gamers' transactional records and gameplay data. The numbers of times and the amounts of prepayment, the numbers of times of chargebacks, and the times of the transactions that the gamers of our study gaming company made were used as characteristics for our k-NN model. The use of these characteristics enabled us to score a minimum of 0.81 in F1-Measure. In addition, three SMOTE (Synthetic Minority Over-sampling Technique) sampling methods were used to deal with the imbalance data provided by our study company and improve the F1-Measure of our proposed k-NN model (scoring up to 0.89 in our experiments). It is hoped that the use of our k-NN model can help reduce potential losses of online gaming companies that may be caused by malicious chargeback fraud, deter to malicious gamers against illegal gains, and prevent the online gaming ecosystem from being sabotaged by malicious chargebacks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信